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Abstract

Robust stability conditions obtained through generalization of the notion of energy

dissipation in physical systems are discussed in this report. Linear time-invariant

(LTI) systems which dissipate energy corresponding to quadratic power functions are

characterized in the time-domain and the frequency-domain, in terms of linear matrix

inequalities (LMIs) and algebraic Riccati equations (AREs). A novel characterization

of strictly dissipative LTI systems is introduced in this report. Sufficient conditions

in terms of dissipativity and strict dissipativity are presented for (1) stability of

the feedback interconnection of dissipative LTI systems, (2) stability of dissipative

LTI systems with memoryless feedback nonlinearities, and (3) quadratic stability of

uncertain linear systems. It is demonstrated that the framework of dissipative LTI

systems investigated in this report unifies and extends small gain, passivity and sector

conditions for stability. Techniques for selecting power functions for characterization

of uncertain plants and robust controller synthesis based on these stability results are

introduced. A spring-mass-damper example is used to illustrate the application of

these methods for robust controller synthesis.

Keywords: State space characterization of dissipative LTI systems, stability of inter-

connected dissipative systems, Linear Matrix Inequalitiess (LMIs) for robust stability.
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Chapter 1

Introduction

Intuitively, a system which dissipates energy would eventually lose all of its initial

energy, and would approach a configuration corresponding to zero energy if energy is

not added to the system. Feedback interconnection of dissipative systems would be

stable if the interconnection is such that individual subsystems dissipate their energy.

Using mathematical abstractions of the notions of physical power and energy, the

concept of energy dissipation has been employed to develop sufficient conditions for

stability with dissipative systems. Numerous stability results in the literature such as

small gain conditions, passivity conditions, and sector conditions for stability follow

naturally as special cases from this framework of dissipative systems.

Energy dissipation in a passive mechanical system is reviewed, first, as an intro-

duction to the characterization of dissipative systems. Consider small oscillations

of a passive mechanical system, such as a spring-mass-damper system[l], about its

equilibrium configuration. Let q = {ql,..., qn} T be a vector of n generalized coor-

dinates characterizing the kinematic configuration of this system. These generalized

coordinates are selected such that q = 0 is an equilibrium configuration of the sys-

tem. Small oscillations of the system about this equilibrium are being investigated.

Let f = {fl,..., f,_}T be the corresponding vector of generalized forces. For small

oscillations, kinetic energy of the system is T = ½qTMq, where M = M T > 0 is a

symmetric, positive definite mass-inertia matrix of the system, and c) corresponds to

generalized velocities. Potential energy of the system is expressed as V = ½qTKq,

where K = K T > 0 is a symmetric, positive definite, stiffness matrix of the sys-



tem. Energy dissipation occurs within the system due to forces proportional to the

generalized velocities, which resist the motion of this system [1]. These forces are

represented by Rayleigh's dissipation function, R = gITD_I, where D = D r >_ 0

is a symmetric, positive semidefinite matrix, characterizing damping in the system.

Lagrangian equations of motion for natural dynamic systems, including Rayleigh's

dissipation function[l, 2], are given as

d_ - + =fi, i=l,...,n.

where L is the Lagrangian, L = T- V. This leads to the equations of motion for small

oscillations of the mechanical system about its equilibrium configuration as

M4+ DO + Kq = f

Natural outputs of this system are generalized velocities, y = q, such that the dot

product (or inner product) of input forces and natural outputs, y • f (equivalently,

yrf) gives the power input to the system.

The total energy of this system, E, is the sum of its kinetic energy and its potential

'( )energy, E = T + V = 7 (1TM(7 + q TKq • Note that the total energy is a quadratic,

positive definite function of the state of the system. The rate of change of total energy

of the system is

dE 1

dt - 2 I, . , AI,qTM[I+qTM_+qTKq+qTKq)

= 0T(M_ + Kq)

Substituting for (M_ + Kq) from the equations of motion of the system, and using

y = _, results in the power balance equation,

dE
-- qT(f - Dgt)

dt

= yTf_ OTDO

This power balance equation mathematically states that the rate of change of total

energy of the system is equal to the power input into the system minus the rate of

energy dissipation in the system. Since the Rayleigh dissipation function is nonneg-

ative for passive systems (_ _> 0), the power balance equation leads to the following

inequality, which is known as the dissipation inequality,

dE < yT f (1.1)
dt -

2



This inequality states that for a passive mechanical system, rate of change of total

energy is less than or equal to power input to the system.

Integrating the power balance equation over an arbitrary interval of time [to, tl]

leads to the energy balance equation,

ftl yT f dt ftl 1= ndt + E(t,)- E(to)

The energy balance equation expresses the fact that the total energy input to the

system over an arbitrary interval of time, given by the time integral of input power

over that interval, is equal to the energy dissipated by the system in that time period

plus the net change in energy of the system. The energy dissipated by a passive

system over any time interval is nonnegative since its integrand, Rayleigh's dissipation

function, is nonnegative. Thus, the passive mechanical system satisfies the following

integral form of the dissipation inequality,

ftl _ yT fdt > E(tl) - E(to)
(1.2)

over an arbitrary time interval [to, tl], and all admissible inputs f. Admissible inputs

are the inputs for which the equations of motion have a well-posed solution. This

restriction is placed on the inputs for technical reasons, and is satisfied by most

inputs encountered in physical systems. Note that the integral form of the dissipation

inequality may be obtained directly by integrating Eq. 1.1) over an arbitrary time

interval. It states that the total energy input to the system over an arbitrary time

interval is greater than or equal to the net change in energy of the system, the

difference being the energy dissipated by the system.

The conditions imposed by energy dissipation in a passive mechanical system are

given in differential form by Eq. (1), and in integral form by Eq. (2). In these inequal-

ities, the inner product of the input forces and output velocities, yTf, represents the

physical power input to the system, p; and the total energy function, E, represents

physical energy of the system, since it is the sum of the kinetic and potential energies.

Consider a generalization of the expression of power to a quadratic function of the

input and the output; and that of the energy function to an arbitrary, positive defi-

nite, quadratic function of system states. Linear time-invariant (LTI) systems which

satisfy the energy dissipation inequality with respect to these generalized power and

energy functions are studied in this report. Note that the quadratic power functions



and quadratic energy functions may not have any physical interpretation correspond-

ing to the notions of power and energy in mechanics. However, employing quadratic

power functions and energy functions leads to the characterization of a large class of

dissipative LTI systems, which includes many types of systems investigated in the lit-

erature, such as gain bounded systems, passive systems, and sector bounded systems.

Furthermore, parallels from the physical notions of power and energy are exploited

to develop stability results for interconnection of dissipative systems. This results in

a framework unifying and extending a number of stability results in the literature.

A very general description of dissipative dynamic systems is presented in Refs.

[3, 4, 5]. Consider a dynamic system in state space form, _ = g(x, f, t), y =

h(x, f, t), where x denotes the system state, f represents input to the system, y is the

system output, and the nonlinear functions, g and h, describe the system dynamics.

This system is said to be dissipative, according to Ref. [3], if there exists an absolutely

integrable function of the input and the output, the power function, p(y, f), (referred

to, the supply rate in Ref. [3]), and a function of the system state, the energy

function, E(x), (referred to as the storage function in Ref. [3]), such that

lp(y,f)dt >_ E(x(tl))- E(x(to)) (1.3)

for all admissible inputs, f(t), and arbitrary time intervals [t0,tl], y(t) being the

response of the dynamic system. The references provide concise results for character-

ization and stability of general dissipative dynamic systems.

This report restricts attention to linear time-invariant (LTI) systems, which are

dissipative with respect to quadratic power functions. This allows the development

of specific expressions characterizing dissipative LTI systems, and computational al-

gorithms for determining dissipativity with respect to quadratic power functions[6].

Time-domain and frequency-domain conditions characterizing dissipative LTI sys-

tems are developed in terms of linear matrix inequalities (LMIs) and algebraic Riccati

equations (AREs). These state space characterizations of dissipative LTI systems are

shown to be generalizations of the corresponding characterizations of gain bounded

systems, sector bounded systems, as well as positive real systems. Novel concepts

of input gain-matrix bounded LTI systems, and output gain-matrix bounded LTI

systems are introduced as generalizations of gain bounded LTI systems. These sys-

tems are also shown to be dissipative with respect to certain quadratic power func-

tions. Strictly dissipative LTI systems are proposed as a further restricted class of

4



dissipative LTI systems,and these systemsare characterizedin time-domain and
frequency-domain.Sufficientconditionsarepresentedfor (1) stability of the feedback
interconnectionof dissipative LTI systems,(2) stability of dissipative LTI systems
with memorylessfeedbacknonlinearities,and (3) quadratic stability of uncertain lin-
ear systems.Resultsfor the threestability problemsmentionedaboveobtained using
small gain, passivity and sectorcriteria, are shownto be specialcasesof the results
for dissipativeLTI systems.New stability results for feedbackinterconnectionof LTI
systems,in terms of input/output gain-matrix boundedLTI systems,alsofollow as
special casesof the stability results for dissipative LTI systems. Finally, numerical
techniquesfor tight characterizationof plant uncertainty employingconvexprogram-
ming techniquesfor linear matrix inequalities, are presented;and, an approachfor
robust dissipativecontroller synthesisis discussed.A numerical exampleof a spring-
mass-dampersystemis usedto demonstratethe application of the resultsdeveloped
in this report for robust controller synthesis.
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Chapter 2

Dissipative LTI Systems

Consider a linear, time-invariant system, _, given by

_(t) = Az(t) + Bf(t),

y(t) = Cx(t) + Df(t), (2.1)

where y(t) is the p × 1 output vector, f(t) is an m × 1 input vector, x(t) is an n × 1 state

vector and the system matrices (A, B, C, D) describe the dynamics of the system. The

p × m transfer function matrix for this system is G(s) = C(sI- A)-IB+D. A general

quadratic power function of the input and the output is expressed as

where Q = QT is a real symmetric p x p matrix, R = R T is a real symmetric m × m

matrix, and N is a real p x m matrix. The LTI system, E, is defined to be dissipative

with respect to a quadratic power function, p(y, f), as follows (Ref. [3]).

Definition 2.1 A stable LTI system, E : _ = Ax + Bf, y = Cx + Df, where

(A, B, C, D) is a minimal system realization, is dissipative with respect to the quadratic

power function,



if there exists a positive definite, quadratic energy function, E(x) = xTpx, with P =

pT > 0, which satisfies the dissipation inequality

_oTp(y,f)dt >_ E(x(T))- E(x(0)), (2.3)

for all T E [0, _) and for all f E £'_.

The extended space of square integrable functions, L2'_, is defined in the Appendix.

Essentially this space characterizes a set of well-behaved input functions, such that

well-posed solutions to the dynamic equations exist, when the input belongs to this

space. This space includes almost all signals encountered in practical applications.

The condition in Eq. (2.3) is the integral form of the dissipation inequality presented

in the introduction. However, note that for the definition above, to = 0 and tl = T

can be used without loss of generality since linear time-invariant systems are being

considered. This inequality ensures that for a dissipative LTI system, the time integral

of power input over any interval, that is, the total energy input to the system, is

greater than or equal to the net change in total energy of the system. The difference

between the total energy input to the system and the net change in energy of the

system is the energy dissipated by the system. This is why systems which satisfy

the inequality above are called dissipative systems. Note again that the quadratic

power function, p(y, f), and the quadratic energy function, E(x), may not have any

physical interpretation, but are mathematical abstractions with properties similar to

of those of physical power and energy. The dissipativity condition can be expressed

in differential form as

cl E(x) < p(y,f) (2.4)
dt

by differentiating the expression in Eq. (2.3) with respect to time. In differential form,

the dissipation inequality states that the rate of change of the stored energy is less

than or equal to the input power, the difference being the rate of energy dissipation.

Observe that if the coefficient matrix for the quadratic power function in Eq. (2.2)

is positive semidefinite, that is, if

Q N]> 0N r R -

it follows from linear regulator theory that the dissipation inequality in Eq. (2.3) is

satisfied by all stable systems [7, 8]. Further, if the matrix is negative definite, the



dissipation inequality is not satisfied by any nontrivial system. Thus, dissipative LTI

systems are characterized by quadratic power functions whose coefficient matrix is

indefinite, that is, it is neither positive semidefinite, nor negative semidefinite. The

set of LTI systems which satisfy the dissipation inequality when the coefficient matrix

is indefinite is a restricted subset of stable LTI systems which is said to be dissipative

with respect to the quadratic power function. The analysis of dissipative LTI sys-

tems with quadratic power functions may be considered as an extension of the linear

regulator theory[7, 8]. Conditions characterizing dissipativity of LTI systems, with

respect to quadratic power functions, appear in terms of linear matrix inequalities

and algebraic Riccati equations, parallel to those of linear regulator theory.

Many systems considered in the literature can be treated as special cases of dissi-

pative LTI systems as defined above. In particular, gain bounded systems, positive

real systems, and sector bounded systems are dissipative with respect to specified

quadratic power functions, as shown below.

Linear time-invariant systems whose 7-/¢¢ norm bounded by unity, (also referred to

as bounded real systems in the literature [9, 10]) satisfy

 oTYT(t)y(tl t< ]oTF(t):( let
for all T e [0, ¢x_) and f e £2'_. Rewriting this condition as

foT{fT(t)f(t)- yr(t)y(t)}dt > 0 (2.5)

it is seen that bounded real systems are dissipative LTI systems with a quadratic

power function p(y,f) = fT(t)f(t)- yT(t)y(t), that is, the general quadratic power

function in Eq. (2.2), with R = I, Q = -I, and N = 0.

Similarly, general norm bounded systems with ][ G(s)" IIo_ -< 7 satisfy

  y (t)y(t)dt < ]f :T(O:(t)dt

for all T E [0, co) and f E £2'_. Thus, these systems are dissipative with respect to

p(y, f) = "/2fT(t)f(t)- yT(t)y(t), that is, the general quadratic power function in Eq.

(2.2) with R = 72I, Q = -I, and N = 0.

Passive systems are characterized by the input-output property [9, 11]

TyT(t)f(t)dt > 0 (2.6)



for all T E [0, c_) and f E £:2"_. This condition corresponds to dissipativity with

respect to a quadratic power function p(y,f) = yT(t)f(t)+ fT(t)y(t)or the general

quadratic power function in Eq. (2.2) with R = 0, Q = 0, and N = I. In fact,

as noted in the first section, dissipative systems are obtained as a generalization of

passive systems.

Sector bounded systems also are special cases of dissipative LTI systems. For

example, consider an LTI system inside sector [a, b] with b > 0 > a. By definition[12,

13], the input and the output of this system satisfy

foT{y(t)--af(t)} T {y(t)-bf(t)}dt < 0

for all T E [0, oc) and f E/:2'_. Rewriting this condition as

fo r {--abfT(t)f(t)+(a+b)yT(t)f(t)--yT(t)y(t)}dt >_ 0 (2.7)

shows that the sector bounded LTI system is dissipative with respect to the quadratic

power function p(y,f) = {--abfT(t)f(t) + (a + b)yT(t)f(t) - yT(t)y(t)) or the gen-

eral quadratic power function in Eq. (2.2) with R = -abI, Q = -I, and N = hi,

where a = (a + b)/2.

These three examples show the generality of the class of LTI systems that are

dissipative with respect to quadratic power functions. These classes of systems are

obtained as special cases of dissipative LTI systems, simply by substituting specific

values for the matrices Q, N and R. Moreover, note the special cases are obtained by

substituting scalar matrices in the coefficient matrix for quadratic power functions.

On the other hand, the following extensions of the notion of gain bounded LTI systems

provide examples of cases where Q and R are full matrices.

An LTI systems, E, with transfer function, G(s) = C(sI - A)-IB + D and 7-loo

gain bounded by 7, that is [[G(s)[[oo _< 7, satisfies [[y[[_ _< [[7f[[2, or equivalently,

foT yTydt <_ .rot 72fTfdt. As an extension to characterization of systems by a positive

scalar, its 7"/oo norm, consider MIMO systems being characterized by symmetric,

positive definite matrices rather than positive scalar gains. A stable LTI system is

defined to be input gain-matriz bounded with respect to a symmetric, positive definite

matrix, Pi = FT > 0, if [[y[[2 < [[PJ[[2, or equivalently, if fT yTydt < fT fTr_fd,,

for all f E/32_- Input gain-matrix bounded systems are easily seen to be dissipative

with respect to the quadratic power functions with Q = -I,R = F_, and N = 0.



To seeinput gain-matrix boundedsystemsas anextensionof gain boundedsystems,
note that an LTI systemwhosegain is boundedby 7 is input gain-matrix bounded
with respectto the scalarmatrix, Fi = 7I. Generalpositive definite values,for Fi can
be employedfor a tighter characterizationof LTI systems,asdiscussedlater in this
report.

Similarly, noting that a gain bounded LTI system also satisfies satisfies [1¼Y[12 <

[If112,a stable LTI system is defined as output gain-matrix bounded with respect to a

symmetric positive definite matrix, Fo = FoT > 0, if Ilrolyll < Ilfll , or equivalently,

if foT yTF-;2ydt < foT fTfdt for all f E £_. Output gain-matrix bounded LTI systems

are seen to be dissipative with respect to quadratic power functions with R = I, Q =

-F: 2, and N = 0. Note that an LTI system whose gain is bounded by 7 is output

gain-matrix bounded with respect to the scalar gain matrix Fo = 71.

Combining these two ideas, an LTI system is input-output gain-matrices bounded

with respect to symmetric positive definite matrices Fi = F T > 0 and Fo = FoT > 0,

if Ilryiull _<IIrJII2, or equivalently, foT yrF-;2ydt < foT frF_fdt for all f E £a'_-

This system is seen to be dissipative with respect to a quadratic power function with

R = F_, Q = F_"2, and N = 0. It should be noted that the gain matrices Fi and

Fo are not independent of each other in the sense that if a system is input-output

gain-matrices bounded with respect to I'i and Fo, then it is also bounded with respect
1

to aFi and _Fo, where a is any positive scalar. Again, to see that these systems form

a generalization of gain bounded systems, note that a system whose gain is bounded

by 7 is input-output gain-matrices bounded with respect to scalar matrices Fi = 7ii

and Fo = 3'ol with 7 = 7i7o.

Frequency-domain characterization of gain-matrix bounded LTI systems in a later

section will further clarify the notion that constraints imposed by the definitions

above are generalizations of gain bounded systems. Moreover, stability results for

gain-matrix bounded systems will be obtained from the general stability result for

dissipative LTI systems in later sections.
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Chapter 3

Time-Domain Characterization

Time-domain characterizations of dissipative LTI systems are developed in this sec-

tion. The first characterization is presented in terms of a constrained solution of a

system of three matrix equations. This characterization is referred to as the dissi-

pativity lemma, since it is a generalization of the Kalman-Yakubovich Lemma (or

positive realness lemma) for positive real systems, and the bounded realness lemma

for gain bounded systems[9, 10]. The conditions of the dissipativity lemma can be

equivalently expressed in terms of a linear matrix inequality (LMI). The LMI charac-

terization of dissipative LTI systems is very important in application of these results

for tight characterization of uncertain plants in terms of dissipativity, as described

in later sections. LMI characterizations of gain bounded, positive real, and sector

bounded systems[6] follow directly from the LMI characterization of dissipative LTI

systems by substituting their respective power functions.

State space characterization of LTI systems which are dissipative with respect to

quadratic power functions is presented in the following Theorem.

Theorem 3.1 Consider a stable LTI system, E : _ = Ax + B f, y = Cx + D f, where

(A,B, C,D) is a minimal realization of the system. The following statements are

equivalent.

11



. The LTI system, E, is dissipative with respect to a quadratic power function,

. (Dissipativity Lemma) There exists a symmetric, positive definite matrix, P =

pT > O, and matrices L and W which satisfy the following system of three

matrix equations,

PA + ATp = CTQC - LTL

PB = CT(QD + N) - LTw (3.1)

R -4-NTD -4-DTN -4- DTQD = wTw

3. (1,1141 Characterization) There exists a symmetric, positive definite matrix, P =

pT > O, which satisfies the following linear matrix inequality

CTQC- PA- ATp CT(QD + N)- PB ](QD + N)Tc -- BTp R q- NTD + DTN + DTQD j > 0
(3.2)

Proof'. (1) ¢= (2) : Assuming that there exists a symmetric, positive definite matrix,

p = pr > 0, which satisfies the conditions of the dissipativity lemma, Eq. (3.1),

it is shown that E(z) = xTPx is a quadratic energy function which satisfies the

dissipativity inequality in differential form, Eq. (2.4). Consider

dE(x) = +&Tpx xT p_c

= xT(A:rp + PA)x + fTBTpx + xTpBf

Using the first two relations in Eq. (3.1) gives

dE(x) = + xTCTQCx + fT(QD + N)TCx +-- xTLTLx

xTCT(QD + N)f - fTWTLx -- xTLTW f

Adding and subtracting fTwTwf for "completing the square" leads to

dE(x) = - xT LTw f -- fTWT Lx -- fTwTw f--xTLTLx

+xTcTQCx + zTCTQDf + fTDTQCz

xTcTNf + fTNTcx + fTwTwf

12



Using the last relation in Eq. (3.1) to substitute for fTwTwf gives

dE(z) = --zTLT(Lx -4- W f) - + W f)fTW:r(Lx

+xTCTQ(Cx + Of) + fTDTQ(Cx + Of)

(zTc T + fTDr)gf + fTNT(Cz + Of) + fTRf

Thus, using y = Cx + D f, it follows that

dE(z) = -(Lx + + W f) + p(y,f) (3.3)wf)T(Lx

Since (Lx + wf)T(Lx + W f) > O, for any input, f E £:_, the differential form of the

dissipativity inequality, _E(x) < p(y, f), follows. Integrating this inequality over an

arbitrary time interval, [0, T], leads to the integral for of the dissipation inequality in

Eq. (2.3).

(2) _ (3) : Let M be a Cholesky factor of the matrix in the linear matrix inequality

condition, Eq. (3.2), that is,

I CTQC- PA- ATp CT(QD + N)- PB ](QD + N)TC -- BTp R + NTD + DTN + DTQD _ = MTM > 0
I.

Partitioning M as M = [ L W ] conformally to the partitions on left-hand side,

leads to

(QD + N)Tc BTP R + NTD + DTN -4- DTQD = WTL wTw

Conditions of the dissipativity lemma in Eq. (3.1) follow by equating the submatrices

in Eq. (3.4).

(2) _ (3) : This follows by reversing the steps above. Forming the matrix in the LMI

condition, Eq. (3.2), using the conditions of the dissipativity lemma, Eq. (3.1), leads

to

(QD + N)Tc BTp R + NTD + DTN + DTQD = WTL wTw

The right-hand side of Eq. (3.5) may be written as MTM, with M = [ L W ]. Thus,

the right-hand side of Eq. (3.5) is nonnegative definite, which is the LMI condition

of (3).

13



(1) =_ (3) : The dissipation inequality in differential form, Eq. (2.4), ensures that

there exists a quadratic energy function E(x) = xTpx, with P = pT > 0, which

satisfies p(y,f)- _tE(x) > O. Algebraic manipulations of this conditions, shown

below, lead to the LMI condition in (3).

First, expand the quadratic power function in terms of the state and the input as

follows.

p(y,f) = yTQy+yTNf + yTNTy+ fTR:

= (Cx + Df)rQ(Cx + Df) + (Cx + Df):rNf + :TNT(Cx + D:) + fTRf

= xTCTQCx -4- xTCT(QD + N)f + fT(QD + N)TCz

+fr(DTQD + DTN + NTD + R)f

= [xT fT] (QD+N) TC R+NTD+DTN+DTQ D f

Further, express the derivative of the energy function, _tE(x), as a quadratic in terms

of the state and the output as follows.

dE(x) = +_,Tpx xTp&

= xT(ATp + PA)x + fTBTpx -4-xTpBf

Substituting from Eq. (3.7) and Eq. (3.6) into the differential form of the dissipation

inequality gives

[ xT fT ] (QD + N)TC- BTp R + NTD + DTN + DTQD f

Since the dissipation inequality must be valid for all f E £2'_, and controllability of

the system realization implies that the inequality must be satisfied for all x, it follows

that

[ CrQC - PA- ATp cT(QD + N)- PB ]
(QD + N)Tc BTp R + NTD + DTN -4-DTQD .J >_ 0

k

This is the LMI characterization of dissipative LTI systems in (3). D

Theorem 3.1 presents constraints on the system matrices of a minimal realization of

an LTI system for the system to be dissipative with respect to a given quadratic power
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function. The generality of the results in Theorem 3.1 for dissipative LTI systems
is emphasizedby noting that the correspondingresults for gain bounded systems,
positive real systems, and sector bounded systems,follow simply by substituting
their respectivepowerfunctions in the generalresults.

The boundedrealnesslemma for characterizingunity gain bounded systems,or
bounded real systems[9,10] and the LMI form of this condition[14, 15] follow by
substituting the powerfunction for boundedreal systems,that is, settingR = I, Q =

-I, and N = 0, in the results of Theorem 3.1.

Corollary 3.1 Consider a stable LTI system, E, with a minimal realization, (A, B, C, D).

The following statements are equivalent.

1. The LTI system, E, is bounded real.

2. (Bounded Realness Lemma) There exists a symmetric, positive definite matrix,

p = pT > 0, and matrices L and W satisfying

PA + ATp = -CTC - LTL

PB = -CT D - LTw (3.8)

1 -- DTD = wTw

. There exists a symmetric, positive definite matrix, P = pT > 0, which satisfies

the following linear matrix inequality

[ PA + ATp + cTc CTD + PB ] <0 (3.9)DT c "4-BT p DT D - I -

The Kalman-Yakubovich lemma, also known as the positive realness lemma, for

characterizing positive real LTI systems[10, 16], and the LMI characterization of pos-

itive real systems[17] follow directly from the results of Theorem 3.1 by substituting

the power function for positive systems, that is, by setting N = I, Q = 0 and R = 0.

Corollary 3.2 Consider a stable LTl system, E, with a minimal realization (A, B, C, D).

The following statements are equivalent.

1. The LT[ system, E, is positive real.
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(Positive Realness Lemma) There exists a symmetric, positive definite matrix,

p = pT > 0, and matrices L and W satisfying

PA + ATp = -LTL

PB = C T - LrW

D + D T = wTw

(3.10)

. There exists a symmetric, positive definite matrix, P = pT > 0, which satisfies

the following linear matrix inequality

PA + ATp PB-C T ]BTp_ C _(D+DT ) <0 (3.11)

State space characterization of LTI systems inside sector [a, b] is presented in terms

of sector boundedness lemma and the corresponding linear matrix inequality in Ref

[6, 18]. These characterizations follow directly from the results of Theorem 3.1 by

setting R = -abI, N = aI and Q = -I where a = (a + b)/2.

Corollary 3.3 Consider a stable LTl system, E,with a minimal realization (A, B, C, D).

The following statements are equivalent.

1. The LT1 system, E, is inside sector [a, b].

2. (Sector Boundedness Lemma.) There exists a symmetric, positive definite ma-

trix, P = pT > 0, and matrices L and W satisfying

PA + ATp = -cTc - LTL

PB = CZ(al- D) - LTW (3.12)

-abl + a(D + D T) - DT D = WTW

where a = (a + b)/2.

3. There exists a symmetric, positive definite matrix, P = pT > 0, which satisfies

the following linear matrix inequality

[ PA+ATp+cTc PB-CT(od-D) ]BTp_(aI_D)TC abI_a(D+DT)+DT D <_0 (3.13)

16



State space characterization of other sector bounded LTI systems in terms of LMIs

can be obtained in a similar fashion by substituting respective power functions.

Next three corollaries present the LMI characterization of gain-matrix bounded

LTI systems. Again, these results follow simply by substituting their respective power

functions into the result of Theorem 3.1. For input gain-matrix bounded systems,

the following result is established by setting Q = -I, N = 0, and R = F_.

Corollary 3.4 Consider a stable LTI system, E, with a minimal realization, (A, B, C, D).

The following statements are equivalent.

1. The LTI system, E, is an input gain-matrix bounded system, with respect to a

symmetric, positive definite matrix, Fi.

2. There exists a symmetric, positive definite matrix, P = pT > 0, and matrices

L and W satisfying

PA ÷ ATp = -cTc- LTL

PB = -CTD - LTw (3.14)

F_ - DT D = wTw

. There exists a symmetric, positive definite matrix, P = pT > 0, which satisfies

the following linear matrix inequality

PA+ATP-FCTC CTD+PB ] < 0 (3.15)DTc + BTP DTD- F_ -

A similar result follows for output gain-matrix bounded LTI systems with respect

to a symmetric positive definite matrix, Fo, by setting Q = -Fo _, N = 0, and R = I.

Corollary 3.5 Consider a stable LTI system, E, with a minimal realization, (A, B, C, D).

The following statements are equivalent.

1. The LTI system, E, is output gain-matrix bounded with respect to a symmetric,

positive definite matrix, Fo.
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2. (Bounded Realness Lemma) There exists a symmetric, positive definite matrix,

p = pr > 0, and matrices L and W satisfying

PA + ATp = -CTF'_2C - LTL

PB = -cTr"_2D - LTw

I- DTF[2D = wTw

(3.16)

.

There exists a symmetric, positive definite matrix, P = pT > O, which satisfies

the following linear matrix inequality

PA + ATp + CTF_2C cTF_D + PB 1 < 0 (3.17)
DTF;2C + BTp DTF_D - I J -

Finally, the result for input-output gain-matrices bounded LTI systems with re-

spect to a symmetric positive definite matrices, Fi, and Fo, follows by setting Q =

-F_ "_, N = 0, and R = F_.

Corollary 3.6 Consider a stable LTI system, E, with a minimal realization, (A, B, C, D).

The following statements are equivalent.

1. The LT1 system, E, is input-output gain-matrices bounded with respect to a

symmetric, positive definite matrices, Fi, and Fo.

2. There exists a symmetric, positive definite matrix, P = pT > O, and matrices

L and W satisfying

PA + ATp = -CTF_2C - LTL

PB = -C:rF_D - LTW

r 2 _ DTF'_2 D = wrw

(3.18)

. There exists a symmetric, positive definite matrix, P = pT > O, which satisfies

the following linear matrix inequality

PA + ATp + CTF_2C cTF_2D + PB 1 < 0 (3.19)
DTF-_2C + BTp DTFo2D -- F_ J -
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In concludingthis section,it is noted that the LMI characterizationof dissipative
LTI systemsin Theorem 3.1 is a very useful result in applications. Dissipativity of
an LTI system with respectto a given power function may be posedasa feasibility
problemwith the LMI in Eq. (3.2). Moreover,tight characterizationof plants canbe
developedasof optimization of linear objective functions with LMI constraints using
the result of Theorem 3.1. Efficientconvexprogrammingalgorithmsareavailable[19]
for the solution of suchLMI problems.Thesetechniqueswill be discussedin greater
detail in a later section. The point emphasizedhereis that the LMI characterization
of dissipativeLTI systemsin Theorem3.1 is essentialfor enbalingsuchanalysis.
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Chapter 4

Algebraic Riccati Equation

Characterization

The linear matrix inequality characterizing dissipative LTI systems is equivalent to

quadratic matrix inequalities (QMIs), or algebraic Riccati inequalities (ARIs) under

an additional constraint. Extremal solutions of the ARIs can be determined from

solutions of the corresponding algebraic Riccati equations (AREs)[20, 21, 22]. This

leads to the characterization of dissipative LTI systems in terms of algebraic Riccati

equations. Again, the ARE characterizations of gain bounded systems, positive real

systems, and sector bounded systems follows directly by substituting their respective

quadratic power functions[6].

The first result presents characterization of certain dissipative LTI systems with

algebraic Riccati inequalities.

Theorem 4.1 Consider a stable LTI system, E : _ = Ax + B f, y = Cx + Dr, where

(A, B, C, D) is a minimal realization of the system, and a quadratic power function,

p(y,f) = [y_ f_ ][
Q N

Assume that the matriz fl = (R + NTD + DTN + DTQD) is positive definite. Then,

E is dissipative with respect to this quadratic power function if and only if there exists

a symmetric, positive definite matrix, P = pT > O, which satisfies the algebraic
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Riccati inequality 0- jV.ff_-ljVT __ O, where 0 = CTQC- PA- ATp and F¢ =

CT(QD + N) - PB.

Proof: The result follows by using the Schur complements identity to show that

the algebraic Riccati inequality above is equivalent to the linear matrix inequality

in Theorem 3.1, under positive definiteness of/_. Note that rearranging terms, (_ -

j_r/_-ij_T ___0 can be written as

CT(Q-(QD+N)R-I(QD+N)T)c-Pft-ftTp-PBR-1BTp>_o (4.1)

where A = A - BR -l(QD + N)Tc. In this form it is clear that this condition is a

quadratic matrix inequality in P.

Since/_ > O, and (_ - jV]_-ijvT > O,

0- Nk-_N r o ]o k _>o

IPost-multiplying by the nonsingular matrix T = /_-l/_T

by T T gives

0 ] and pre-multiplying
I J '

0 0, k]- >o

Thus, with/_ > 0, a symmetric, positive definite matrix, P = pT > 0, satisfies the

algebraic Riccati inequality if and only if it satisfies the LMI. Thus, the result follows

from Theorem 3.1. [2

Feasibility of the algebraic Riccati inequality can be determined from the solutions

of the corresponding algebraic Riccati equation, using comparative theorems for these

solutions, and results for extremal solutions of algebraic Riccati equations[21, 22].

Furthermore, conditions for the existence of a symmetric, positive definite solution

to algebraic Riccati equations have been studied extensively, in terms of conditions

on eigenvalues of the corresponding Hamiltonian matrix[23]. These conditions can

be used to establish dissipativity of LTI systems, as summarized in the following

Theorem.
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Theorem 4.2 Consider a stable LTI system, E, with a minimal system realization

(A, B, C, D), and a quadratic power function,

Assume that the matrix ._ = (R + NTD + DTN + DTQD) is positive definite. Then

the system is dissipative with respect to this quadratic power function, if and only

if there exists a symmetric, positive definite solution, P = pr > 0 to the algebraic

Riccati equation

.4T p + P.4 + PB.FI-IBT P - Cr[Q - (QD + N)R-I(QD + N)r]C = O, (4.2)

where .4 = A - BTI-I(QD + N)TC. Equivalently, the Hamiltonian matrix

H = CT[Q _ (DQ + N)h-I(DQ + N)r]C

does not have eigenvalues on the imaginary axis.

Algebraic Riccati equation and Hamiltonian matrix characterization of the special

cases follow by substituting their power functions in the results of Theorem 4.1 and

Theorem 4.2. These results are well known for gain bounded systems and positive

real systems[22, 24]. The following corollaries demonstrate that these results follow

directly from the general result for dissipative systems by substituting the power

functions for bounded real and positive real systems.

Corollary 4.1 Consider a stable L TI system, E, with a minimal realization (A, B, C, D).

Assume the matrix R = (I - DrD) is symmetric and positive definite. Then, the sys-

tem is bounded real if and only if there exists a symmetric, positive definite matrix,

p = pr > 0, which satisfies the algebraic Riccati inequality

ATp + PA + (CTD -4- PB)h-I(CTD + PB) T + cTc <_ 0 (4.3)

Equivalently, E is bounded real if and only if there exists a symmetric positive definite

solution to the algebraic Riccati equation

ArP + Pfi, + PBR-1BTP + C r (1 + DR-1D T) C=O (4.4)
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where A = A + BR-1DTC, or if the Hamiltonian matrix

[ ]H: _C T (I q_ DR_ID T) C -(A + BR-1DTC)T

does not have eigenvalues on the imaginary axis.

Corollary 4.2 Consider a stable L TI system, 2, with a minimal realization (A, B, C, D).

Assume the matrix R = (D ÷ D T) is symmetric and positive definite. Then, the sys-

tem is positive real if and only if there exists a symmetric, positive definite matrix,

p = pT > 0, which satisfies the algebraic Riccati inequality

ATp + PA + (PB - cT)[:I -a (PB - cT) T <_ 0 (4.5)

Equivalently, _ is positive real if and only if there exists a symmetric, positive definite

solution to the algebraic Riccati equation

_Tp + Pft + PB_I-aBTP + CTR-1C = O, (4.6)

where f4 = A - BR-1C, or if the Hamiltonian matrix

H= [ A-BR-1C BR-IB T ]-CTR-1C -(A- BR-'C) T

does not have eigenvalues on the imaginary axis.

Algebraic Riccati equation characterization of sector bounded and gain-matrix

bounded LTI systems follows from Theorem 4.2 by substituting their respective

quadratic power functions.

Algebraic Riccati equation and Hamiltonian matrix characterization of dissipative

LTI systems allows the use of well established numerical techniques to determine

whether a given LTI system is dissipative with respect to specified quadratic power

functions. This provides an alternative to the LMI technique presented in the previ-

ous section for establishing dissipativity of an LTI system with respect to a quadratic

power function. Both approaches have their merits. Though efficient convex program-

ming techniques are available for determining the feasibility of LMIs, the algebraic

Riccati equation approach is computationally faster for high order systems. However,
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the algebraic Riccati equation approach can be used only when/_ is well-conditioned

and can be inverted reliably. In general, it has been observed that numerical accuracy

of the LMI approach is superior when the problem data is not well conditioned. Fur-

ther, LMIs are very useful in determining power functions such that all plants from

a given uncertainty set of plants are dissipative with respect to that power function.

Thus, it is concluded that both LMI and ARE characterizations of dissipative LTI

systems are useful in characterizing dissipative LTI systems.
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Chapter 5

Frequency-Domain Properties

Frequency-domain properties of dissipative LTI systems are examined in this sec-

tion. A frequency-domain inequality that is satisfied by all dissipative LTI systems

is presented first. Then, it is shown that this inequality establishes dissipativity with

respect to quadratic power functions that have negative semidefinite coefficient ma-

trix Q. In other words, the frequency-domain conditions are necessary and sufficient

for power functions with Q = QT < 0, and are necessary for all dissipative LTI sys-

tems. Note the class of dissipative systems with Q = QT < 0 includes all the special

cases being considered and numerous generalizations. Thus, frequency-domain char-

acterization of gain bounded[9, 10], positive real, and sector bounded systems[18, 12]

follows from the results of this section by substituting their respective power func-

tions. Further, frequency-domain conditions for gain-matrix bounded systems are

also presented.

The first Theorem presents the frequency-domain inequality satisfied by all dissi-

pative LTI systems.

Theorem 5.1 If a stable LTI system, _, with transfer function matrix, G(s), is

dissipative with respect to a quadratic power function

I T T1[QN 
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then

for all w.

¢(jw) = [ G*(jw)

Proof: Let (A, B, C, D) be a minimal realization of E. Since E is dissipative with

respect to p(y, f), there exists a symmetric, positive definite matrix, P = pT > O,

and matrices L and W which satisfy the following conditions of the dissipativity

lemma,

PA + ATp = CTQC - LT.L

PB = CT(QD + N) - LTw

R+ NTD + DTN + DTQD = wTw

Using these relations, the result follows from algebraic manipulations outlined below.

Since G(jw) = C(jwI- A)-IB + D, and G*(jw) = BT(--jwI- A:r)-IC T + D T,

¢(jw) = [BT(--jwI - AT)-'C T + D T] Q [C(jwI- A)-aB + D]

+ [BT(--jwI- AT)-IcT + D T] N + N T [C(jw'- A)-'B + D] + R

Expanding and collecting the terms

= BT(-jwI - AT)-ICTQC(jwI- A)-IB

+BT(--jwI- AT)-_CT(QD + N) + (QD + N)Tc(jwI- A)-_B

+DTQD + DTN + NTD + R

Substituting for the relations of the dissipativity lemma, Eq. (3.1),

¢(jw) = BT(--jwI - AT) -1 (PA + ATp + LTL) (j_I- A)-IB

+Br(--jwI - AT)-I(pB + LTw)

+(BTp + WTL)(jwI - A)-'B+ wTw

Rearranging terms,

¢(jw) = BT(--jwI -- AT)-aLTL(jw I - A)-IB + Br(--jwI -- AT)-ILTW

+WTL(jwI - A)-IB + wTw

+BT(--jwI - AT)-_pB + BTp(jwI- A)-_B

+BT(--jwI - AT)-I(pA + ATp)(jwI- A)-_B
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Note that

BT(--jwI - AT)-I(-PA_ ATp)(jwI- A)-IB

= BT(--jwI - AT) -1 [(-jwI- AT)p + P(ja;I- A)I (jwI- Ai-IB

-_ BTP(jwI - A)-IB + BT(--jwI - AT)-IpB

Thus,

_(j03) : (L(jia2I- n)-lg -_- W)* (L(jogI- A)-IB --_ W)

= D*(jw)D(jw)

where V(jw) = L(jwI- A)-XB + W. Since Z)*(jw)D(jw) >_ 0 for all w, the result

follows. []

The next Theorem establishes sufficiency of the frequency-domain inequality for

dissipativity of LTI systems with respect to quadratic power functions with negative

semidefinite coefficient matrix, Q.

Theorem 5.2 Consider a stable LTI system, E, with transfer function matrix, G(s),

and a quadratic power function,

p(y,f) = [ yW N T R][f

with Q = QT <_ O. If the LTI system, E, satisfies the frequency-domain condition

for all w, then E is dissipative with respect to the quadratic power function, p(y, f).

Proof: The details of this proof are involved, but the key idea is that the matrix

relations of the dissipativity lemma follow by comparing minimal realizations on either

side of a spectral factorization identity for ¢ [25, 26]. The proof is a generalization

of the frequency-domain proofs for bounded realness lemma and positive realness

lemma.

First, recall some notation and results reviewed in the Appendix. Paraconjugate

of a rational transfer function matrix, M(s), is M~(s) =_ Mr(-s). If (A,B,C,D) is
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a realization of M(s), then (-A T, -C r, B T, D r) is a realization of M~(s). A matrix

¢(s) is said to be parahermitian if ¢~(s) = ¢(s). Finally, the spectral factorization"

theorem states that a parahermitian matrix, ¢(s), which is positive semidefinite on

the imaginary axis can be factored as ¢(s) = M~(s)M(s), where the spectral factor,

M(s), is proper, stable, and its transmission zeros are in the closed left-half plane.

Note that

,1
is parahermitian. Further, ¢(s) is assumed to be positive, semidefinite on the imagi-

nary axis. Thus, the spectral factorization theorem ensures that there exists a stable,

proper, spectral factor, M(s), of ¢(s), that is,

R I = M~(s)M(s) (5.2)

The matrix relations of the dissipati', _y lemma are obtained by comparing minimal

realizations on either side of the spectral factorization identity, Eq. (5.2). Recall from

Theorem 3.1 that satisfying the conditions of the dissipativity lemma implies that the

LTI system is dissipative with respect to the corresponding quadratic power function.

Let (A1, B1, C1, Da) be a minimal realization of M(s). Then, M~(s) has a realiza-

tion (-A T, -Ca T, B T, DT). Therefore, the product of these transfer function matrices,

M~(s)M(s) has a realization

([A1 0][ 1 ] )-C_C, -A T ' -Crl D, ' [ DTC' B_ ] ,D[D,

Since the state space realization of M(s) is minimal, (Aa, C1)is observable, and there

exists a symmetric positive definite matrix, Xa = X T > 0, such that

A_X,+X, AI+CTxCI=O (5.3)

IApplying the state transformation X1
as

0 ] gives another realization for M~(s)M(s)
I l

([A10][ ] )0 -A T ' -XIB,-C_D, ' [ BaTX, +Dr_C, Brx ],D_D1 (5.4)
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Note that this realization isminimal sinceall modesof M(s) are stable, and all modes

of M~(s) are unstable.

Next, a minimal realization of the left hand side of the spectral factorization iden-

tity in Eq. (5.2) is obtained. Let (A, B, C, D) be a minimal realization of G(s). Then,

a realization of QG(s) is (A,B, QC, QD), that of G~(s) is (--AT,--CT, BT, DT), and

a realization of G~(s)QG(s) is

_CTQC -A T , _CTQD ,[ DTQC BT ],DTQD

Since A is stable and Q = QT < 0, there exists a symmetric, positive semidefinite

matrix, X -- X T > 0, such that

ATX + XA = cTQc (5.5)

Applying the state transformation [ I-X

as

o
0 ] gives another realization for G~(s)QG(s)
I J

, [ -BTX + DTQC B T ] ,DTQD)

Further, a minimal realization of G~(s)N + NTG(s) is

0 -A T ' -CTN '[NTC ] 'NTD+D TN

Thus, a realization of ¢(s) = G~(s)QG(s)+G~(s)N + NTG(s)+ R is (Ar, Br, Cr,Dr),

where

Ar:[AO]0 -A T

B_ = XB- Cr(QD + N)

Cr = [ -BTX + (QD + N)TC B T]

Dr = R+NTD+DTN+DTQD (5.6)

Note again that this is a minimal realization, since modes of A are stable, and modes

of -A T are unstable.
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Now comparethe minimal realizations on either side of the spectral factorization

identity, Eq. (5.2), given by Eq. (5.4) and Eq. (5.6). It follows that there exists a

nonsingular state transformation matrix, T, such that

A1 = T-1AT

B1 = T-1B

BTx, + D_C, = (--BTX + (QD + N)TC) T

D_D, = R + N:rD + DTN + DTQD (5.7)

Detailed arguments for guaranteeing the existence of such a transformation matrix,

T, follow from the same arguments as those presented in Ref. [27].

Finally, manipulations with the matrix relations in Eq. (5.7) leads to the relations

of the dissipativity lemma. Setting W = D1 gives

R + NTD + DTN + DTQD = wTw

Substituting A1 = T-1AT in Eq. (5.3), premultiplying by T -T and postmultiplying

by T -1, results in

AT(T-TX1T -1) + (T-TXIT-1)A = -T-TcTc1T -1 (5.8)

Adding Eq. (5.5) and Eq. (5.8), and setting P = X+T-TXIT -_ > 0 and L = CIT -_,

results in

ATp + PA = CTQC - LTL

Further, using the second and third relations in Eq. (5.7) leads to

B T (T -TX,T -1) + D T C,T-' = (QD + N) T C - B TX

Rearranging the terms, and substituting for P = pT > 0, L, and W gives the remain-

ing relation of the dissipativity lemma,

PB = CT(QD + N)- LTw

Thus, it follows from the hypothesis of the theorem that there exists a positive definite

matrix, P = pT > 0, and matrices L and W such that

PA + ATp = CTQC - LTL

PB = CT(QD + N) - LTw

R+ NTD + DTN + DTQD = wTw
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It follows from Theorem 3.1 that the system, E, is dissipative with respect to the

quadratic power function, p(y, f). []

Theorem 5.1 and Theorem 5.2 establish that the frequency-domain inequality in

Eq. (5.1) is necessary and sufficient to characterize dissipative LTI systems with

respect to a quadratic power function for which Q = QT < O. This condition is

satisfied for the special classes of dissipative LTI systems being considered. Therefore,

necessary and sufficient frequency-domain conditions characterizing gain bounded,

positive real, and sector bounded systems follow by substituting their power functions

into the results of Theorems 5.1 and 5.2, and are summarized in the corollaries below.

Note that often these equivalent frequency-domain characterizations are used to define

these special classes of dissipative systems.

Corollary 5.1 Consider a stable L TI system, E, with a minimal realization (A, B, C, D ),

and transfer function matrix, G(s). The LTI system is bounded real if and only if its

frequency response, G(jw), satisfies

¢(jw) = I- G*(jw)G(jw) > 0 (5.9)

for all w. Equivalently, there exists a symmetric, positive definite matrix, P = pW > 0,

and matrices L and W which satisfy

PA + ATp = -cTc- LTL

PB = -CTD - LTw

I -- DTD = wTw

if and only if the frequency-domain inequality in Eq. (5.9) is satisfied for all w.

Corollary 5.2 Consider a stable LTI system, E, with a minimal realization (A, B, C, D),

and transfer function matrix, G(s). The LTI system is positive real if and only if its

frequency response, G(jw), satisfies

¢(jw) = G*(jw) + G(flo) >_ 0 (5.10)

for all w. Equivalently, there exists a symmetric, positive definite matrix, P = pT > O,

and matrices L and W which satisfy

PA + AT p = -LT L

PB = C T - LTw

D T + D = wTw
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if and only if the frequency-domain inequality in Eq. (5.10) is satisfied for all w.

Corollary 5.3 Consider a stable LTl system, E, with a minimal realization (A, B, C, D),

and transfer function matrix, G(s). The LT1 system is inside sector [a,b], for a <

0 < b, if and only if its frequency response, G(jw), satisfies

¢(jw) = -abI + a(G*(jw) + G(jw)) - G*(jw)G(jw) >_ 0 (5.11)

for all to, where a = (a + b)/2. Equivalently, there exists a symmetric, positive definite

matrix, P = pT > O, and matrices L and W which satisfy

PA + ATp = -cTc - LTL

PB = CW(aI - D) - Lrw

-abI + a(D T + D) - DTD = wTw

if and only if the frequency-domain inequality in Eq. (5.11) is satisfied for all w.

These results also provide the necessary and sufficient frequency-domain condi-

tions for gain-matrix bounded LTI systems. As with gain bounded systems, these

equivalent frequency-domain conditions may also be considered as definitions of gain-

matrix bounded systems. Also, these conditions further clarify the interpretation of

gain-matrix bounded systems as extensions of gain bounded systems. The frequency-

domain conditions for these systems follow directly by substituting their power func-

tions into the general results for dissipative LTI systems.

First, consider input gain-matrix bounded LTI system, with respect to the input

gain-matrix, Fi. The corollary below follows by setting Q = -I, N = 0, and R = F_.

Corollary 5.4 Consider a stable LTl system, E, with a minimal realization (A, B, C, D),

and transfer function matrix, G(s). The LTlsystem is input gain-matrix bounded with

respect to a symmetric positive definite matrix, Fi, if and only if its frequency response,

G(jw), satisfies

¢(jw) = F_ -G'(jw)G(jw) >_ 0 (5.12)

for all w. Equivalently, there exists a symmetric, positive definite matrix, P = pT > O,

and matrices L and W which satisfy

PA + ATp = -CTC- LTL

PB = -CT D - LTW

F_ - DT D = wTw
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if and only if the frequency-domain inequality in Eq. (5.12) is satisfied for all w.

Similarly, frequency-domain conditions for output gain-matrix bounded systems

follow by setting Q = -Fo, N = 0, and R = I.

Corollary 5.5 Consider a stable LTI system, E, with a minimal realization (A, B, C, D),

and transfer function matrix, G(s). The LTI system is output gain-matrix bounded

with respect to a symmetric positive definite matrix, Fo, if and only if its frequency

response, a(jw), satisfies

O(jw) = I- G*(j )ro2G(j ) >_o (5.13)

for all w. Equivalently, there exists a symmetric, positive definite matrix, P = pT > O,

and matrices L and W which satisfy

PA + AT p = -cTro_c - LT L

PB = -CTFo2D - LTw

I -- DTFo2D = wTw

if and only if the frequency-domain inequality in Eq. (5.13) is satisfied for all w.

Results for input-output gain-matrices bounded LTI systems with respect to sym-

metric positive definite matrices, Fi and Fo, follow by setting Q = -Fo 2, N = 0, and

R=

Corollary 5.6 Consider a stable LTI system, Z, with a minimal realization (A, B, C, D),

and transfer function matrix, G(s). The LTI system is input-output gain-matrices

bounded with respect to symmetric positive definite matrices, Fi and Fo, if and only

if its frequency response, G(jw), satisfies

¢(jw) = G*(jw)ro G(jw) >_0 (5.14)

for all w. Equivalently, there exists a symmetric, positive definite matrix, P = pT > O,

and matrices L and W which satisfy

PA + AT p = -CTFo2C - LT L

PB = -cTFo2D - LTw

r_ - DTFo2D = wTw

if and only if the frequency-domain inequality in Eq. (5.14) is satisfied for all aJ.
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Again, to see that gain-matrix bounded systems are extensions of gain bounded

systems, consider an LTI system whose 7"/00 norm is bounded by .7. It is straightfor-

ward to check from the frequency-domain conditions that this system is input gain-

matrix bounded with respect to the matrix Fi = -yI; it is output gain-matrix bounded

with respect to the matrix Fo = .7I; and it is input-output gain-matrix bounded with

respect to the matrices Fi = .7ii and Fo = %1, where 7i and .70 are scalars such

that "7 = .7i%. With the scalar structure of the symmetric, positive definite gain-

matrices above, gain-matrix bounded systems are reduced to the usual gain bounded

systems. However, when these matrices are not restricted to a scMar structure, but

are allowed to be general symmetric, positive definite matrices, gain-matrix bounded

systems characterize a much larger class L:rI systems. Stability results for gain-matrix

bounded systems are also derived from those of general dissipative systems and are

presented in later sections.

The frequency-domain inequality characterization provides insight into the frequency-

domain behavior of the dissipative LTI systems, and this interpretation is very useful

in selecting quadratic power functions for uncertain systems. Frequency-domain con-

ditions for positive real systems have been used in the literature for graphically deter-

mining positive realness of a system. However, with the efficient numerical methods

for LMIs and AREs available now, frequency-domain conditions are not used for de-

termining dissipativity of LTI systems. However, these conditions are very useful in

exhibiting the frequency-domain characteristics of dissipative LTI systems, and are

often used to define the special cases of dissipative systems.
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Chapter 6

Strictly Dissipative Systems

A key notion for the stability of interconnected dissipative systems is that of strictly

dissipative systems. As will be seen in the next section, dissipativity of LTI sys-

tems establishes Lyapunov stability of interconnected dissipative systems only. A

more restrictive notion than dissipativity is needed to establish asymptotic stabil-

ity of the interconnected dissipative systems. However, the literature on dissipative

systems[3, 4, 5] lacks a consistent approach to the notion of strictly dissipative sys-

tems. In this section, a novel characterization of strictly LTI dissipative systems is

presented, which has been motivated by the requirements of stability of intercon-

nected dissipative systems. State space characterization of strictly dissipative LTI

systems, in terms of further constraints beyond the dissipativity lemma, are also

presented. Frequency-domain implication of the additional constraints is that the

frequency-domain inequality (FDI) must be satisfied in a strict sense. It is shown

that this definition of strict dissipativity is consistent with strict bounded realness

and strict positive realness.

Consider the energy balance equation for LTI systems which are dissipative with

respect to quadratic power functions to explore further restrictions required for strictly

dissipative systems,

foTp(y(t),f(t))dt = foTT_dt + E(T) E(O) (6.1)

where foT 7_dt represents the energy dissipated by the system. The definition for

dissipativity requires that the dissipated energy, f0T Ttdt, be greater than or equal to
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zero,sothat the dissipation inequality in Eq. (2.3), namely,

foTp(y(t),f(t))dt > E(T)- E(O)

is satisfied. However, this definition allows dissipative systems to have motion along

which no energy is dissipated. That is, it is possible to have f[ Tidt = 0 along certain

nontrivial state trajectories for dissipative LTI systems. For these state trajectories,

the energy balance equation reads foT p(y(t), f(t))dt = E(T)- E(O), or energy input

is equal to the net change in energy of the system, and no energy being dissipated.

Strictly dissipative LTI systems are defined below as systems which dissipate en-

ergy along almost all state trajectories of the system. A finite number of trajectories

along which no energy dissipation occurs are exponentially stable trajectories, with

exponentially decreasing input. An exponentially decreasing input, f(t), is an input

of the form f(t) = i_(t)e "t, where _t(t) is a polynomial vector in t of the same di-

mension as f, and Re{s} < 0. It is shown later in this section that these exceptional

trajectories correspond to stable transmission zeros of a real rational transfer func-

tion matrix. In other words, energy must be dissipated by a strictly dissipative LTI

system for almost all motion of the system, and energy dissipation may be equal to

zero only for a finite number of exponentially stable trajectories of the system. The

proposed definition of strictly dissipative LTI systems based on these consideration

is as follows.

Definition 6.1 A stable LTI system, _ : Jc = Ax + Bf, y = Cx + Df, where

(A, B, C, D) is a minimal realization, is strictly dissipative with respect to a quadratic

power function,

if there ezists a positive definite, quadratic energy function, E(x) = xTpx, with P =

pT > O, which satisfies the strict dissipation inequality

ff p(y,f)dt > E(x(T))- E(z(0)) (6.2)

for all T E (0, _) and for all nonzero f E _2_, ezcept for a finite number of ezponen-

tially decreasing inputs.

State space characterization of strictly dissipative LTI systems is developed next.

Note that a strictly dissipative LTI system is obviously dissipative with respect to
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its quadraticpowerfunction; however,it satisfiesadditional constraintsbeyondthose
required by dissipativity. Thus, a strictly dissipative systemmust satisfy the dissipa-
tivity lemma,and someadditional constraints, presentedin the next Theorem.

Theorem 6.1 A stable LTIsystem, E : ic = Ax+Bf, y = Cx+Df, where (A, B, C, D)

is a minimal realization of the system, is strictly dissipative with respect to a quadratic

power .function,

if and only if there exists a symmetric, positive definite matriz, P = pr > O, and

matrices L and W satisfying the dissipativity lemma,

PA + ATp = CTQC - LTL

PB = CT(QD + N) - LTw

R + NTD + DTN + DTQD = wTw

the matrices (A, L) are observable, and all transmission zeros of the transfer function,

z (s) = L(sI- A)- B + W, are the open l¢-hal,f plane.

Proof: Since a strictly dissipative system also satisfies the conditions for dissipativity,

there exists a symmetric, positive definite matrix, P = pT > 0, and matrices L and

W, which satisfy the dissipativity lemma. Thus, from the proof of Theorem 3.1 it

follows by intergrating Eq. (3.3), over the interval [0, T], that

10 /0TTp(y(t),f(t))dt = dT(t)d(t)dt + E(T)- E(O)

where d = Lx + W,f. Thus, the rate of energy dissipation function, 74(t) in Eq. (6.1),

is given as 7_(t) = dT(t)d(t).

First assume that the LTI system is strictly dissipative. If (A, L) is not observable,

it is possible to have nonzero state trajectories in the unobservable subspace of (A, L)

along which d = Lx + W,f is identically zero. Therefore, exponentially increasing

input can be generated, which excites unobservable states of the system only, such

that 7¢(t) = dT(t)d(t) - O. The system does not dissipate energy along these unstable

trajectories with exponentially increasing input, which implies that the system is not

strictly dissipative, a contradiction. Thus, (A, L) must be observable. Since (A, B)
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is controllable by the minimality assumption for E, it follows that (A, B, L, W) is

a minimal realization for _D(s) = L(sI- A)-IB + W. Furthermore, d = Lx + Wf

is identically zero when the system input is along the direction corresponding to

a transmission zero of _D(s). If :D(s) has a transmission zero in the closed right-half

plane, then there exists an input f corresponding to this transmission zero, that is not

exponentially decreasing, for which d = Lx + W f = 0 and _(t) = dT(t)d(t) - O. This

again contradicts the hypothesis for a strictly dissipative LTI system, therefore, all

transmission zeros of _D(s) must be stable. Thus, for strictly dissipative LTI systems,

there must exist a symmetric, positive definite matrix, P = pT > 0, and matrices

L and W, which satisfy the dissipativity lemma, the matrices (A, L) are observable,

and all the transmission zeros of D(s) must be stable.

Conversely, assume that there exists a symmetric, positive definite matrix P ----

pT > 0, and matrices L and W, which satisfy the dissipativity lemma, (A, L) is

observable, and all the transmission zeros of D(s) are in the open left-half plane.

Then, d = Lx + Wf - 0 only for input f E/:2'_, corresponding to stable transmission

zeros of D(s), that is, only for a finite number of exponentially decreasing input. For

all other f E /:_, the energy dissipated, foT gr(t)d(t)dt > 0, that is, the system is

strictly dissipative with respect to p(y, f). []

Note from the proof of Theorem 6.1 that a finite number of system inputs for

which a strictly dissipative LTI system does not dissipate energy correspond to stable

transmission zeros of :D(s) = L(sI-A)-IB+W. For all other inputs f E £:_, a strictly

dissipative LTI system must dissipate energy, that is, foT "R(t)dt = foT arr (t)d(t)dt > O.

Further, it should be noted that the differential form of the dissipation inequality

in Eq. (2.4), namely, _tE(x) < p(y,f), is not strenghtened to _E(z) < p(y,f), for

strictly dissipative LTI systems. It is possible for d = Lx + Wf to be equal to zero at

certain time instants, even for strictly dissipative LTI systems. However, d(t) must

not be identically equal to zero over a finite time interval. In terms of the matrices

L and W, satisfying the dissipativity lemma, this implies that L and W do not have

to be full column rank for strict dissipativity. The necessary and sufficient conditions

on L and W for strict dissipativity are that (A, L) is observable, and transmission

zeros of :D(s) = L(sI - A)-IB + W are stable.

For the frequency-domain conditions, recall from Theorem 5.1 that a dissipative
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LTI systemsatisfies

for all c_,where D(s) = L(sI- A)-IB + W. Since D(s) is minimal and does not

have transmission zeros on the imaginary axis (its trazismission zeros are stable), it

follows that 7)*(jw)Z)(jco) > 0 for all w. Thus, if an LTI system with transfer function

G(s) is strictly dissipative with respect to a quadratic power function, p(y, f), then

its frequency response, G(jw), satisfies

¢(jw) = [ G*(jw) /l[ i ,64,
for all w.

The converse is true for the case where Q = QT <_ 0 is symmetric, negative

semidefinite. In this case, if the frequency response, G(jw), of an LTI system satisfies

>0

for all aJ, then from Theorem 5.2 it follows that there exist matrices P = pT > 0, L

and W, which satisfy the dissipativity lemma, so that

for allw, where 7)(s) = L(sI-A)-IB+W. Spectral factorization, ¢(jw) = Z)*(jw)g)(jw)

can always be performed such that 7)(s) is minimum phase and stable with (A, B, L, W)

being a minimal realization. This implies that (A, L) is observable and g)(s) does not

have transmission zeros in the closed right-half plane. Thus, the strict frequency-

domain inequality in Eq. (6.4) ensures strict dissipativity of the LTI system when

Q=QT_<0.

For Q = QT < 0, the strict frequency-domain inequality of Eq. (6.4) is a neces-

sary and sufficient condition for strict dissipativity of the LTI system. This observa-

tion shows that the definition of strict dissipativity is consistent with strict bounded

realness and strict positive realness. Substituting the power function for bounded

realness shows that a system with transfer function, G(s), is strictly bounded real
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if its frequencyresponsesatisfies¢(jw) = I - G*(jw)G(jw) > 0, for all w, that is,

if ][G(s)l[¢¢ < 1. This is the definition for strictly bounded real LTI systems in Ref.

[9, 10]. Similarly, using the power function for positive real systems in the definition

of strictly dissipative systems shows that an LTI system is strictly positive real if and

only if ¢(jw) = G*(jw) + G(jw) > 0, for all w. Again this definition is consistent

with the definition of strictly positive real systems in Ref. [28]. Finally, substitut-

ing the power function for systems inside sector [a, b] leads to the frequency-domain

characterization of LTI systems to be strictly inside sector [a, b] as

¢(j_: = -abI + a(G*(jw) + a(jw)) - G*(jw)G(jw) > 0

for all w, where _ = (a -i- b)/2 as in Refs. [12, 18].

Frequency-domain criteria for LTI systems which are strictly gain-matrix bounded

follow by substituting their respective power functions. A stable LTI system is strictly

input gain-matrix bounded with respect to a symmetric positive definite matrix,

r, = r, > 0, if and only if ¢(jw) = F_ - G*(jw)G(jw) > 0 for all w. A stable LWI

system is strictly output gain matrix bounded with respect to a symmetric positive

definite matrix, Fo = FoT > 0, if and only if its frequency response satisfies ¢(jw) -

I-G*(jw)F:2G(jw) > 0 for all w. Finally, a stable LTI system is strictly input-output

gain-matrix bounded, with respect to matrices, F_ = F T > 0, and Fo = FoT > 0, if

and only if its frequency response satisfies ¢(jw) = F_ - G*(jw)r;2G(j_) > 0 for all

w. These frequency-domain conditions are necessary and sufficient, and can be used

to define these strictly gain matrix bounded systems.
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Chapter 7

Stability of Feedback

Interconnection

A central result of this report, namely, sufficient conditions for closed-loop stability of

the standard feedback interconnection of dissipative LTI systems, is presented in this

section. This stability result is shown to be a very general result, in that small gain

conditions, passivity conditions, and a number of sector conditions for stability[12, 29]

follow as special cases of this result. Further, new stability conditions are obtained for

gain-matrix bounded LTI systems by substituting their quadratic power functions,

demonstrating the generality of the result for dissipative systems.

Figure 7.1: Negative Feedback Interconnection of Dissipative LTI Systems.

Consider two stable linear, time-invariant systems, E1 and _2, in the standard

negative feedback interconnection, as shown in Fig. 7.1. Assume that (Ai, Bi, Ci, Di)

are minimal realizations of these systems, such that their dynamics are given by the
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state space equations,

xi = Aixi + Bifi

yi = Cix_ +Difi, i = 1,2 (7.1)

The standard negative feedback interconnection imposes the conditions f2 = yl, and

fl = -y2. Further, assume that these two systems are dissipative with respect to

quadratic power functions respectively,

The following Theorem gives sufficient conditions on the power functions under which

the feedback interconnection is stable.

Theorem 7.1 If there exist positive scalars, al > 0 and a2 > 0, such that

alpl(yl, f_) + a2_(-£,yl) < 0 (7.3)

for all Yl and fl, then the standard feedback interconnection of dissipative LTI systems,

_1 and _2, is Lyapunov stable. Furthermore, if either of these systems is strictly

dissipative, then the closed-loop system is asymptotically stable.

Proof: A weighted sum of the energy functions of these two dissipative systems is

used as a Lyapunov function to establish the stability results.

Since the LTI systems, El, for i = 1,2 are dissipative with respect to quadratic

power functions, pi(yi, fi), by Theorem 3.1, there exist symmetric, positive definite

matrices, Pi = pT > 0, and matrices L_, Wi for both systems (that is, i = 1, 2), which

satisfy the conditions of the dissipativity lemma,

PiA, + ATp_ = CTQiCi - LT LI

PiB, = CT(Q,D, + Ni) - LTwi

R_ + NTD, + DTNi + DTQ,D, = wTw_

Consider a Lyapunov function, V(x,,x2) = a,E_(x) + a_E2(x), where Ei(xi) =

xTpix_, correspond to the quadratic energy functions for Y],I and Z2. Since al >
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0,a_ > 0, and the energy functions, Ei(zi), are positive definite functions, the Lya-

punov function, V(Xl, z2), is a positive definite function of the states of the closed-loop

system, xl, x2. The derivative of this Lyapunov function along system trajectories is

d d d

_V(zl,Z_) = _l_El(Xl) + _E_(x_)

From the proof of Theorem 3.1, it follows that

-_Ei(xi)d = -(L_xi + Wifi)T(Lixi + Wifi) + pi(yi, fi)

for i = 1, 2. Thus,

d

-_V(xx,x_) = -a,(LlXl + Wlfl)T(L,Xl + W_fl) + c_ip,(y,,f,)

-a2( L2z2 + W2f2)r (L2x2 + W2f2) + c_2p2(y2, f2)

Since a_ > O, and (L_x_ + W_f_)T(L_x_ + W_f_) > O, for i = 1, 2, it follows that

d

 v(xx, x2)_<o,lp (ua, + o 2p:(y ,

Using the conditions for the standard feedback interconnection, that is, f2 = yl and

Y2 = -fl, gives
d

-_W(Xl,X2) < alpl(yl,fl) + a_p2(-fl,ya)

Since, by hypothesis, o_pl (yl, fa ) + o_2p_(- fa, Yl ) < O, the derivative of the Lyapunov

function along closed-loop system trajectories is dV(xl, x2) < 0. Thus, by Lyapunov's

Second Theorem [27], the closed-loop system is Lyapunov stable.

For asymptotic stability, without loss of generality, assume that _ is strictly

dissipative with respect to the quadratic power function, P2(Y2, f2). It is shown that

the trivial solution, that is, xl - 0 and x2 - 0, is the only possible trajectory when

dV(xl, x2) --0, so that asymptotic stability of the closed-loop system is established

using LaSalle's Theorem [30, 27]. Since each of the terms in the expression for the

derivative axe nonpositive, dy(x_,x2) -- O, implies that d2 = L2x2 + W2f2 = 0. Since

strict dissipativity of E: implies that the system is observable and transmission zeros

are stable, either f2 - 0 or f2 decreases exponentially with time. Stability of E2

implies that x: and y2 are also exponentially decreasing functions of time. Thus,

input and output to the first system fl and yl are exponentially decreasing, from

the requirements of the feedback interconnection. Stability and minimality of the
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realization of Ea implies that xx is decreasing exponentially. Now, since xl and x2 are

exponentially decreasing with time, _V(xa, x2) < 0, which is a contradiction. Thus,

the equilibrium configuration at the origin is the only possible system trajectory with

dV(xl, x2) = O. Hence, the result. If E1 is strictly dissipative, interchanging the

indices of the systems, the argument above again establishes stability of the closed-

loop system. []

Theorem 7.1 is a very powerful result on stability of feedback interconnection of

linear time-invariant systems. Next, a series of corollaries are presented, which show

that a number of stability results in the literature follow directly by substituting

specific power functions and values of scalars to satisfy the sufficient condition in Eq.

(7.3). The feedback interconnection of LTI systems, whose stability is characterized in

the corollaries, is the standard negative feedback interconnection, shown in Fig. 7.1.

The Small Gain Theorem for stability of the feedback interconnection of LTI systems

follows by using ai = 1, and power functions for bounded real system, pi(yi, fi) =

fiTfi -- yTyi, for i = 1, 2 in Theorem 7.1.

Corollary 7.1 (Small Gain Theorem) The feedback interconnection of two bounded

real LTI systems (that is, systems satisfying IIa (s)ll < 1, for i = 1,2) is Lyapunov

stable. The closed-loop system is asymptotically stable if either of the systems is

strictly bounded real (that is, IIa (s)ll < 1, for i = 1 or i = 23

A more general result for small gain conditions, which is essentially a scaled version

of the result above, states that the standard feedback interconnection is stable if the

gains [[Gi(s)[[oo < 74 for i = 1,2, satisfy 7172 < 1. This result follows by using power

functions for gain bounded systems, pi(yi, fl) = 7_fTf_- yTyl, and scalars al = 1

and 02 = 72.

Corollary 7.2 (Passivity Theorem) The feedback interconnection of two positive

real systems is Lyapunov stable. If either system is strictly positive real, then the

closed-loop system is stable.

These passivity conditions for stability for the feedback interconnection of passive

LTI systems follows by using ai = 1, and power functions for positive real system,

pi(yl, fi) = fTYi + YT fl, for i= 1,2 in Theorem 7.1.
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The sectorstability results, presentedin the next seriesof corollaries, represent

a refinement of the results in the literature[12, 13, 31] since the definition of LTI

systems satisfying the sector conditions in a strict sense is weaker than that assumed

in the literature.

Corollary 7.3 The feedback interconnection of an LTI system, El, inside sector

[a, b], where a < 0 < b, with another LTI system, E2, which is inside sector [-_,-_],

is Lyapunov stable. If either system satisfies its sector constraint in a strict sense,

the closed-loop is stable.

This result follows using al = 1, a2 = -ab, and the power functions corresponding

to the sector conditions, that is, pl (yl, fl) = -(Yl - afl)T(yl -- @1) and p2(Y2, f2) =

-(y2 + f2/b)T(Y2 + f2/a) in Theorem 7.1.

Corollary 7.4 The feedback interconnection of an LT1 system, _1, inside sector

[a, b], where 0 < a < b, with another LTI system, E2, which is outside sector [-_,-_],

is Lyapunov stable. If either system satisfies its sector constraint in a strict sense,

the closed-loop is stable.

Using O_1 = 1, as = ab, and the power functions corresponding to the sector condi-

tions, that is, pl (yl, fl ) = --(yl--afl)T (yl-byl) and p2 (y2, f2) = (Y2+ f2/a) T (Y2+ f2/b)

in Theorem 7.1 leads to this result.

Corollary 7.5 The feedback interconnection of an LTI system, El, inside sector

[0, b], where 0 < b < oz, with another LTI system, E2, which satisfies (E2 + l/b)

is positive real, is Lyapunov stable. If either system satisfies its constraints in a strict

sense, the closed-loop is stable.

Using al = 1, as = b, and the power functions corresponding to the sector conditions,

that is, Pl (Yl, fl) = _yT(yl -- by1) and P2(Y2, f2) = fT(y2 + .]:2/b) in Theorem 7.1 leads

to this result.

Other combinations of sector conditions for stability of the feedback interconnec-

tions can be obtained in a similar fashion. Note that all the results presented thus
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far follow by substituting scalarmatrices for the coefficientmatricesof the quadratic
powerfunctions, namely,matrices Qi, Ni, Ri, for i = 1, 2. These results are essentially

extensions of the single-input single-output (SISO) stability results to multi-input,

multi-output (MIMO) systems. However, assigning general nonscalar values to the

matrices Qi, Ni, P_, leads to stability which are truly MIMO stability results in that

they provide a larger number of parameters to characterize stability characteristics

as opposed to system gain (a scalar) or sector conditions (two scalars). For obtain-

ing general results for MIMO systems, consider a matrix oriented expression of the

stability condition in Eq. (7.3). Since the equation must be true for all yl, fl, the

condition in Eq. (7.3) is equivalent to

alQl+a2R2al N T - a2 N2
 1N1 - r ] < 0 (7.4)
aiR1 + a2Q2 J -

This form of the sufficient condition for stability immediately leads to the following

corollary, which is a very significant result itself.

Corollary 7.6 The feedback interconnection of an LTI system, Z1, which is dissipa-

rive with respect to the quadratic power function,

Pl(Yl,fl) "--_1 [ yT1 fT ] [ ON T

with another LTI system, _2, which is dissipative with respect to the quadratic power

function

N -O f2 '

for any oq, a2 > O, is Lyapunov stable. If either system is strictly dissipative with

respect to its quadratic power function, then the closed-loop is stable.

Proof: Using the power functions for these dissipative systems in Eq. (7.4) leads to

0_10_2 Q-Q N-N]NT - N T R- R =0<_0

Thus, Eq. (7.4) is satisfied, and the result follows from Theorem 7.1. D

The next three corollaries present new stability results for gain-matrix bounded

LTI systems. Since gain-matrix bounded LTI systems form an extension of gain
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bounded systems, the following results may be viewed as extension of the small gain

conditions.

Corollary 7.7 The feedback interconnection of an input gain-matrix bounded LTI

system with respect to F, with another LTI system which is output gain-matrix bounded

with respect to F -1, is Lyapunov stable. If either LTI system is strictly bounded with

respect to its gain-matrix, then the closed-loop is stable.

Proof: Note that the power functions for these systems are Q1 = -R2 = -I, N1 =

N2 = 0, and R1 = -Q2 = F 2- The result follows substituting these in Eq. (7.4), with

al = a2 = 1 and Theorem 7.1. t:]

Corollary 7.8 The feedback interconnection of an output gain-matrix bounded LTI

system with respect to F, with another LTI system which is input gain-matrix bounded

with respect to F -1, is Lyapunov stable. If either LTI system is strictly bounded with

respect to its gain-matrix, then the closed-loop is stable.

Proof: The power functions for these systems are Q2 = -Rx = -I, N1 = N2 = 0, and

R2 = -Q1 = F -2. The result follows substituting these in Eq. (7.4), with al = a2 = 1

and Theorem 7.1. 1:3

Corollary 7.9 The feedback interconnection of an input-output gain-matrices bounded

LTI system with respect to Fi and Fo, respectively, with another LTI system which is

input-output gain-matrices bounded with respect to Fo 1 and F_-1, respectively, is Lya-

punov stable. If either LTI system is strictly bounded with respect to its gain matrices,

then the closed-loop is stable.

Proof: Note that the power functions for these systems are Q2 = -R1 = -F_,

N1 = N2 = 0, and R2 = -Q1 = Fo 2. The result follows substituting these in Eq.

(7.4) with al = a2 = 1 and Theorem 7.1. O

Numerous other stability results for MIMO systems, like the ones presented above,

can be obtained simply by substituting different power functions in the result of

Theorem 7.1. This demonstrates that the sufficient conditions for stability of a closed

loop system presented in Theorem 7.1 is a very powerful and comprehensive stability

result.
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Chapter 8

Stability with Feedback

Nonlinearities

Application of the framework of dissipative LTI systems is studied in this section for

stability of linear time-invariant systems, with memoryless (perhaps time-varying)

nonlinearities in negative feedback. LTI systems with feedback nonlinearities are re-

ferred to as Lurd systems in the literature[ll, 30]. Many systems which are primarily

characterized as linear time-invariant systems except for a few nonlinear components

such as saturating actuators, can be represented as Lurd systems. Therefore, tradi-

tionally, there has been significant interest in the stability of such systems.

Figure 8.1: LTI System, _, with Negative Feedback Nonlinearities.

The stability results are available primarily for sector bounded nonlinearities, with

positive real constraints on a transformed linear system [11, 30]. Stability of Lurd

systems is established in this section for a large class of nonlinearities, with dissipa-
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tivity conditions on the LTI system. The results for sector bounded nonlinearities,

norm bounded nonlinearities and passive nonlinearities follow as special cases of these

results.

Consider an LTI system, E, with a minimal state space realization, (A, B, C, D),

such that its dynamics are described by _ = Ax+Bf, y = Cx+Df, where x is an n × 1

vector, and f, y are m × 1 vectors. The feedback nonlinearity is represented by kg(y, t),

which is memoryless, that is, no dynamics are associated with the feedback loop, as

shown in Figure 8.1. Also, the nonlinearity kg(y, t) has m outputs with m inputs, y(t).

Since negative feedback is assumed, f = -g2(y, t). Thus, the time-varying, nonlinear

closed-loop system is given by

J: = Ax- BgJ(y,t)

v = cx- D (y,t) (8.1)

Note that the measurement equation for the system above is a nonlinear equation,

which is implicit in y(t), output of the linear system. The nonlinearity, _(y,t), is

assumed to satisfy smoothness cenditions such that the closed-loop system in Eq.

(8.1) is well-posed, that is, its solution exists and is unique. Specifically, it is assumed

that the nonlinearity, k_(y, t) is locally Lipschitz in y and uniformly Lipschitz in t, so

that the Lurd system in Eq. (8.1) is well-posed [11, 30]. Furthermore, it is assumed

that _(0,t) - 0, for all t, so that the origin is an equilibrium of the closed-loop

system.

Theorem 8.1 If the nonlinearity gy(y,t) satisfies

gJTQg2 q- gITNy q- yTNTgl + yTRy __ 0 (8.2)

for all t and for all y E I_, and the LTI system, E, is dissipative with respect to the

quadratic power function,

then the origin is a Lyapunov stable equilibrium of the Lurd system in Eq. (8.1). If E

is strictly dissipative with respect to p(y, f), then the origin is a globally asymptotically

stable equilibrium.
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Proof: Since the LTI system, E, is dissipative with respect to the quadratic power

function, p(y, f), there exists a symmetric, positive definite matrix, P = pT > O,

such that

PA + ATp = -CTRC - LTiL

PB = CT(N T - RD) - LTW

-Q + ND + DT N T - DT RD = wTw

Consider the energy function of the dissipative LTI system, E, as a Lyapunov function,

V(x) = xTpx, which is a positive definite function, since P = pT > 0. Proceeding

in parallel to the proof of Theorem 3.1, the time derivative of the Lyapunov function

along the trajectories of the system is

dy(x) = -(Lz + w f)T(Lx + W f) + p(y,f)

Since (Lx + Wf)Z(Lx + W f) >_ O, and using the feedback relationship, f = -_,

shows that

_V(x) = -(@TQ@ + _TNy + yTNT @ + yTRy )

From the hypothesis, it follows that _V(x) < 0, so that the origin is a Lyapunov

stable equilibrium.

If E is strictly dissipative, then global asymptotic stability follows by showing

that the trivial trajectory at the origin is the only possible system trajectory when

dy(x) = 0, by the Invariance Theorems in Ref. [27]. Since dV(x) = 0 implies that

d = Lx + Wu = 0, and _D(s) = L(sI - A)-IB + W has only stable transmission

zeros, either input, f, and state, x, are identically zero, or they are exponentially

decreasing. However, since P = pT > 0, exponentially decreasing states contradict

the condition, _V(x) = 0, the trivial state, x(t) - O, is the only possible trajectory.

Hence the result. []

Note that Theorem 8.1 requires that the condition in Eq. (8.2) is satisfied globally,

and this leads to global asymptotic stability of the Lur_ system shown in Figure

8.1. However, if the condition in Eq. (8.2) is satisfied in some neighborhood of the

origin, but not globally, then the arguments above establish asymptotic stability of

the equilibrium at the origin.

The following three corollaries present the results for the special cases, which follow

simply by substituting their respective power functions.
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Corollary 8.1 /]" the nonlinearity kO(y, t) satisfies yTy _ t_Tko __ 0 for all t and for

all y E R m, and the LTI system, _, is bounded real, then the origin is a Lyapunov

stable equilibrium of the Lurd system in Eq. (8.1). If _ is strictly bounded real, then

the origin is a globally asymptotically stable equilibrium.

Corollary 8.2 If the nonlinearity kO(y,t) satisfies yTk9 > 0 for all t and for all

y C R TM, and the LTI system, E, is positive real, then the origin is a Lyapunov stable

equilibrium of the Lurd system in Eq. (8.1). If E is strictly positive real, then the

origin is a globally asymptotically stable equilibrium.

Corollary 8.3 /f the nonlinearity _(y, t) satisfies (_2- ay)T(k9- by) < O, a < 0 < b,

for all t and for all y E R "_, and the LTI system, _, is inside sector [-2,-_], then the

origin is a Lyapunov stable equilibrium of the Lurd system in Eq. (8.1). If _ satisfies

the sector condition in a strict sense, then the origin is a globally asymptotically stable

equilibrium.

Finally, the following result follows by using the power function of a system outside

a sector. This result is usually expressed as the absolute stability result[27, 30].

Corollary 8.4 If the nonlinearity qt(y,t) satisfies (ql--ay)T(_- by) __ O, 0 < a < b,

for all t and for all y C R m, and the LTI system, E, is outside sector [-_,-_], then the

origin is a Lyapunov stable equilibrium of the Lurd system in Eq. (8.1). If E satisfies

the sector condition in a strict sense, then the origin is a globally asymptotically stable

equilibrium.

For a SISO system, the result above corresponds to the Circle Criterion [30], since a
1 1

SISO LTI system being outside sector [-_,-g] implies that the frequency response
1

of the system lies outside the circle intersecting the real axis at _!_ and -_ in the

frequency plane.

Finally, the framework of dissipative LTI systems extends the results for stability

of Lurd systems, beyond unification of the SISO results, to MIMO stability results,

which may be obtained by substituting their specific power functions in the stability

result of Theorem 8.1.
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Chapter 9

Quadratic Stability

Quadratic stability deals with stability of uncertain linear systems for all time-varying

parameter variations within a predefined uncertainty set.

Figure 9.1: Uncertainty Configuration for Quadratic Stability.

The time-varying hnear systems, whose stability is being investigated, are given

a_

$(t) = (A + AA(t))x(t) (9.1)

where x(t) is an n x 1 state space vector, A is the constant, known part of the system

matrix, and AA(t) is the unknown, time-varying part of the system matrix. The

unknown time-varying component of the system matrix is assumed to be within an

uncertainty set, that is, AA(t) E A, where _ is a known, predefined uncertainty set.

The uncertain linear system in Eq. (9.1) is said to be quadratically stable if there exists

a parameter-independent quadratic Lyapunov function which guarantees stability for
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all time-varying parametricvariationswithin the uncertainty set. Quadraticstability
iscontrastedwith aweakerconceptof robust stability, wherethe uncertainparameters
in AA are constant, but unknown. Robust stability may be established by ensuring

that the system eigenvalues are in the open, left-half plane for all uncertain values of

the parameters within the uncertainty set. A discussion of the distinction between

quadratic stability and robust stability can be found in Ref. [32].

The uncertain component of the system matrix, AA(t), may depend on a smaller

set of parameters, represented by an m ×m matrix, F(t), such that AA(t) = -BF(t)C,

where B is a n × m matrix, and C is a m × n matrix. The matrices B, C describe

the distribution of the uncertain parameters in the matrix, F(t), onto the uncertain

component, AA(t). The uncertain parameter matrix, F(t), belongs to a parametric

uncertainty set, AF, so that F(t) E Z_F implies that AA(t) E A. Thus, the uncertain

linear system can be represented as shown in Fig. 9.1, as a known linear system with

state space realization, (A, B, C, 0), with the matrix of uncertain parameters, F(t),

in negative feedback. The minus sign in the description of system matrix uncertainty

had been selected to be consistent with the negative feedback paradigm. A general

approach to representing uncertain linear systems as a known LTI system, with the

parametric uncertainty in a negative feedback matrix, is referred to as "pulling out

the A's" in the literature[24, 22]. In general, the direct feed through matrix (the D

matrix) of the linear system may not be zero, as in the simpler description, above.

In this general case, the uncertain component of the system matrix is expressed as

AA(t) = -BF(t)(I + OF(t)) -1C.

Quadratic stability of uncertain linear systems has primarily been studied for norm

bounded parametric uncertainty, that is, for systems where the parametric uncertainty

set AF is defined in terms of norm bounds. The next result develops the extension

of quadratic stability results to problems where the known linear, time-invariant part

of the uncertain system is dissipative.

Theorem 9.1 Consider an uncertain system, E : _c(t) = (A + AA(t))x(t), where

AA(t) = -BF(t) (I + DF(t)) -1 C, and F(t) is a matrix of uncertain, time-varying

parameters, which satisfy

Q- NF(t) - FT(t)N T ÷ FT(t)RF(t) __ 0 (9.2)

/f (A, B, C, D) is a minimal realization of an LTI system, which is dissipative with
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respect to the quadratic power function

then the origin is a Lyapunov stable equilibrium of the uncertain system, E. If the

LTI system is strictly dissipative, then the uncertain system is quadratically stable.

Proof: Since the LTI system is dissipative with respect to the quadratic power func-

tion, p(y, f), there exists a symmetric, positive definite matrix, P = pT > 0, and

matrices L and W which satisfy the dissipativity lemma,

PA + ATp = CTQC - LTL

PB = CT(QD + N) - LTw

R + NTD + DTN + DTQD = wTw (9.3)

Consider the energy function of this dissipative LTI system as a Lyapunov function

for the uncertain linear system, V(x) = xTpx, where P = pT > 0 is a symmet-

ric, positive definite matrix which satisfies the dissipativity lemma above. The time

derivative of this Lyapunov function along the trajectories of the uncertain linear

system is

dy(x) = xT(pA + ATp)x- xTpBF(t)(I + DF(t))-ICx

--zTcT(I + DF(t))-TFT(t)BTpz (9.4)

Let H(t) = (I + OF(t)) -1, and drop the argument t from H(t) and F(t) to simplify

the following expressions. Using the first two relations in Eq. (9.3) gives

dv(x) = xT(cTQC - LTL)x- x T (CT(QD + N)- LTw) FHx

--xTHTF T ((QD + N)Tc - WTL) x

= --xTLTLx + xTLTWFHx + xTHTFTWTLx + xTcTQCx

--xTCT(QD + N)FHz - xTHTFT(QD + N)Tcx (9.5)

Adding and subtracting xTHTFTWTWFHx to Eq. (9.5) for completing the square,

and using the last relationship in Eq. (9.3), leads to

dv(x) = q- q- -- xTHTFFwTWFHx_xTLLx xTLTWFHx xT HT FTWT Lx

+xTCTQCx -- zTcT(QD + N)FHx - xTHTFT(QD + N)TCx

+xTHTFT(R + NTD + DTN + DQD)FHx
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Collectingterms and simplifying

dY(x) = -xr(L- - WFH)z + -WFH)T(L xT(C DFH)TQ(C -- DFHIx

--xT(C -- DFH)TNFHx - xTHTFTj_T(c -- DFH)x

+xT HT FT RFHx (9.6)

Note the identity, H = (C- DFH), which may be verified readily from the definition

of H. Using this identity in Eq. (9.6) gives

dv(x) = --xT(L-- WFH)T(L- WFH)x

+x T H T (Q - NF - F TN T + F T RF) Hx (9.7)

Since xT(L -- WFH)T(L - WFH)x >_ 0, and by the hypothesis, the second term

in Eq. (9.7) is nonpositive, it follows that dV(x) <_ O. Thus, the uncertain, linear,

time-varying system is Lyapunov stable about the origin.

If the LTI system G(s) = C(sI - A)-lB + D is strictly dissipative with respect to

the quadratic power function, p(y,f), then/)(s) = L(sI- A)-IB + W is a minimal

realization of a stable, minimum phase transfer function. Denote f = -FHx, so that

y' - (L- WFH)x = Lx + Wf. Thus, from Eq. (9.7) it follows that dv(x) = 0

implies y' = 0. Since T)(s) is minimum phase, y' = 0 implies that either x - 0, or

that f = -FHx and x are exponentially decreasing functions of time. The later

possibility leads to a contradiction, since it implies _V(x) < 0. Hence, x - 0 is the

only possible trajectory when dV(x) = O. Therefore, the uncertain system, E, is

asymptotically stable for all F(t) e AF by the Invariance Theorems in Ref. [27], that

is, the uncertain linear system, E, is quadratically stable. D

The stability result of Theorem 9.1 represents a general conditions for quadratic

stability of a large class of uncertain linear systems. Particular results when paramet-

ric variations belong to uncertainty sets characterized as in Eq. (9.2) follow simply

by substituting the corresponding power functions in Theorem 9.1. Specifically, the

case for norm bounded parametric uncertainty is presented in the following corollary,

since this case has been studied extensively in the literature.

Corollary 9.1 Consider an uncertain system, E : _c(t) = (A + AA(t))x(t), where

AA(t) = -BF(t)(I + DF(t)) -1 C, and F(t) is a matrix of uncertain, time-varying
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parameters, is norm bounded, that is it satisfies

I- Fr(t)F(t) > 0 (9.8)

for all t. If (A, B, C, D) is a minimal realization of an LTI system, which is bounded

real, then the origin is a Lyapunov stable equilibrium of the uncertain system, E. If

the LTI system is strictly bounded real, then the uncertain system is quadratically
stable.

This corollary follows from Theorem 9.1 by substituting Q = -I, R = I, and

N = 0. Using the Riccati equation characterization for strictly bounded real systems,

the corollary above states the quadratic stability result in Ref. [32]. Thus, corollary

9.1 presents the Riccati equation conditions for quadratic stability with norm bounded

uncertainty[32], in terms of bounded real systems, which has a more general LMI
characterization.

Similar results can be obtained for quadratic stability when the known LTI system

is positive real, by substituting N = I and Q = R = 0, and for sector bounded LTI

systems, by substituting Q = abI, N = aI, and R = I, where a = (a + b)/2. These

results are not stated as separate corollaries to avoid repetition. Thus, it is seen that

the framework of dissipative LTI systems presents a general framework for quadratic

stability of a large class of uncertain linear systems.
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Chapter 10

Selection of Quadratic Power

Functions

Characterization of stable LTI systems in terms of dissipativity with respect to cer-

tain quadratic power functions is necessary for the application of the stability results

developed in the three previous sections. The selection of quadratic power functions,

such that a given LTI system is dissipative with respect to the power function, is

addressed in this section. This problem is posed as optimization of linear objec-

tive functions with LMI constraints_ or positive semidefinite programming problems,

which can be solved using efficient convex programming techniques [19, 33, 34].

The LMI characterization of dissipative LTI systems, given by Theorem 3.1, forms

the foundation for the techniques presented in this section. Let a minimal realization

of a given stable LTI system be (A, B, C, D), and the coefficient matrices for a given

quadratic power function be Q = QT R = R T, and N. First, consider the problem

of determining whether this LTI system is dissipative with respect to the quadratic

power function. An LMI approach to this problem, based on the result of Theorem

3.1 is discussed here. This feasibility problem is posed as maximization of a linear

objective function, J = t, with respect to a scalar variable, t, and a symmetric matrix,

p = pT, such that (1) P - tI > 0 and

[ CTQC-PA-ATp CT(QD+N)-PB ](2) (QD + N)Tc -- BTp R ÷ NTD ÷ DTN _ DTQD _ 0

If the parameter t attains a positive value, then the first condition implies that the
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symmetricmatrix P = pT is positive definite, and the second condition implies that

it satisfies the dissipativity LMI, so that the LTI system is dissipative. Otherwise, the

system is not dissipative with respect to the given quadratic power function: Note that

the problem of maximization of a linear objective function subject to LMI constraints

is a convex programming problem. Thus, a global maximum for the parameter t exists,

and may be computed using efficient numerical technqiues [14, 34].

Often, it is desirable to obtain the coefficient matrices, Q = QT, R = R T, and

N of the power function, such that a given LTI system is dissipative with respect

to that power function. Note that the matrix inequality of the dissipativity lemma

is linear with respect to the matrix P = pT as well as the coefficient matrices,

Q = QT, R = [l T, and N. Therefore, the problem of selecting quadratic power func-

tions can be posed as an LMI problem, with the coefficient matrices also being con-

sidered as optimization variables. However, since every stable LTI is dissipative with

respect to numerous quadratic power functions, it is desirable to determine power

functions which somehow provide a tight characterization of the LTI system under

consideration. The motivation for tight characterization of plants is to obtain a larger

class of controllers that stabilize the closed-loop system, using the stability result of

Theorem 7.1; or, to enlarge the uncertainty sets described in Theorems 8.1 and 9.1.

A number of approaches to such selection of power functions are discussed in the rest

of this section.

Consider the power function corresponding to the _oo norm of a stable LTI system,

_, whose transfer function is G(s) = C (s I - A)-I B + D, and (A, B, C, D) is a minimal

realization. From Section 2, it follows that if a parameter, % is larger than the 7"/¢¢

norm of E, that is, if [[G(s)[[oo _< 3', then the system is dissipative with respect to

a quadratic power function with coefficient matrices, Q = -I, R = 3,2I, and N = 0.

Thus, to select a tight power function of this form, the parameter 3' must be minimized

until it attains its minimum value, which is [IG(s)[[oo. However, since 3'2 appears in

the dissipativity LMI, rather than 7, the objective function J = 3'2 leads to a positive

semidefinite programming problem. Thus, selection of quadratic power functions

with the structure of system gain is accomplished by minimizing a linear objective

function, J = 72, with respect to a symmetric, positive definite matrix, P = pT > O,

and positive scalar, 3'2 under the LMI constraint for bounded realness, that is,

PA + ATp --b CTC CTD + PB ] < 0DTc q- BTp DTD - 72I J -
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By definition, the optimum value is J = IIG(s)lli. Thus, this approach also pro-

vides a convex programming approach to computing the 7-/_ norm of a stable LTI

system. It is noted here that this approach to computing 7-/o_ norm of a stable LTI

system is very robust and efficient, since it involves positive semidefinite program-

ming for the minimization of a linear objective subject to LMI constraints. This is in

contrast to computing the H_ norm using a bisection technique along with checking

imaginary axis eigenvalues of a Harniltonian matrix, which becomes an ill-conditioned

problem as the parameter ")' gets closer to the norm. For large dimension systems,

this positive semidefinite programming approach is computationally intensive, but

provides accurate results.

Next, an LMI approach is presented to obtain a tight characterization of an LTI

system in terms of input gain-matrix boundedness. The approach is to minimize the

size of the input gain-matrix, as measured by its Frobenius norm, with respect to

which the system is input gain-matrix bounded. Note that for the special case of

gain bounded systems, with scalar input gain-matrices, the Frobenius norm of the

scalar input gain-matrix is proportional to the gain of the system. Thus, for this

special case, minimizing the Frobenius norm of the input gain-matrix is equivalent to

minimizing the gain of the system. For the general case, the approach for obtaining a

tight characterization of an LTI system in terms of input gain-matrix boundedness is

to determine the minimum Frobenius norm, input gain-matrix. Recall that coefficient

matrices for the quadratic power functions of input gain-matrix bounded systems are

Q = -I, N = 0, and R = F_. The square of the Frobenius norm of F_ is the trace

of the symmetric positive definite matrix, R = R T > O. The problem is reduced to

minimizing the trace of a positive definite matrix, R = R T > 0, (with Q = -I and

N = 0 remaining fixed), while satisfying the dissipativity LMI. A minimum Frobenius

norm input gain-matrix, F_, is given by the square root of R. Thus, the LMI problem

is to minimize a linear objective function, J = Trace R, with respect to positive

definite matrices, P = pT > 0 and R = R T > 0, under the LMI constraint,

[ PA+ATp÷cTc CTD-t-PB ] < 0DTc -t- BrP DTD - R -

An input gain-matrix bounding the given LTI system with minimum Frobenius norm

is given by Fi = R 1/2.

A similar approach can be used to determine an output gain-matrix bounding an

LTI system, Fo = FoT > 0, such that Frobenius norm of its inverse is maximized. From
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section 2, the coefficient matrices for the quadratic functions of output gain-matrix

bounded systems are R = I, N = 0, and Q = -F_ -2. Let V = Fo 2, so that the trace

of this symmetric positive definite matrix, Trace V, is the square of the Frobenius

norm of Fo 1. The LMI problem becomes to maximize a linear objective function,

d = Trace V, with respect to symmetric, positive definite matrices, P = pT > O, and

V = V r > 0, such that

PA + ATp + cTvc CTVD + PB ] < 0
DTvc + BTp DTVD - I J -

An output gain matrix, bounding the LTI system, is given by Fo = V -1/2.

An LMI approach to determine parameters, a, b, such that a < 0 < b and a

given LTI system lies inside sector [a, b] is presented next. The characterization of

tightness of sector boundedness is motivated by the frequency-domain interpretation

of a sector bounded single-input single-output (SISO) LTI system in the frequency

plane. A SISO LTI system inside sector [a, b] has its frequency response within a

circle in the frequency plane, which intersects the real axis at a and b, with the center

of this circle being on the real axis. The center of this circle is at (a + b)/2 and the

radius of this circle is equal to (b - a)/2. When a = -7 and b = 7, this corresponds

to the 7-/00 gain of the system being bounded by 3', which implies that its frequency

response lies within a circle centered at the origin, having radius 7- Minimizing 7 2,

therefore, corresponds to minimizing the square of the radius of a circle centered at

the origin (which is proportional to the area of the circle), such that the frequency

response lies within the circle. Sector boundedness allows the center of this circle to

lie anywhere on the real axis of the frequency plane. Thus, a tight characterization of

a SISO LTI system in terms of sector boundedness is to determine the smallest circle

centered on the real axis, such that the frequency response of the LTI system lies

within the circle. The smallness of the circle is measured in terms of the area of the

circle, which is proportional to square of the radius of this circle, that is, (b - a)2/4.

With motivation from the frequency-domain interpretation above, the optimization

problem is to select the parameters a and b such that (b - a)2/4 is minimized, with

the LTI system being inside sector [a, b]. Note that (b - a)2/4 = a 2 + _1, where

c_ = (a + b)/2, and _1 = -ab > 0. Furthermore, to obtain a linear objective, set

J = _1 + _2, with _2 > cz2. These manipulations are performed to formulate the

optimization problem of selecting the parameters a, b as the following LMI problem:

To minimize the linear objective function, J = _1 + '2, with respect to a symmetric
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positive definite matrix, P = pT > 0, and positive scalars _1, $2, a, under the following

LMI constraints:

PA + ATp + CTC PB - cT(aI -- D) ]BTp-(aI-D)TC $aI-a(D+D T)+DTD <_0

and

[_2 a]>0c_ 1 -

The optimal values of a and b are obtained as a = a - v/a 2 + $1 and b = a+ x/_ + _1,

from the optimal values for a and _1.

Another tight characterization of LTI systems can be obtained in terms of sym-

metric positive definite matrices, R = R T > 0, and general nonzero matrix, N, with

Q = -I, as described by the following LMI problem. Minimize a linear objective

function, J = Trace R ÷ _1, with respect to symmetric positive definite matrices,

R = R T > 0, P = pT > 0, and a general matrix, N, which satisfy the LMI con-

straints,

and

PA + ATp --b cTc CT(D - N) + PB ] < 0(D - N)Tc + BTp DTD - NTD - DTN - R J -

611 N T ] > 0N I -

A similar LMI optimization could be performed with R = I, arbitrary nonzero matrix,

N, and Q = QT < O.

Once power functions providing a tight characterization of uncertain plants to be

controlled have been obtained, controllers are synthesized to enhance system perfor-

mance while ensuring that they satisfy the dissipativity criteria for robust stability.

Synthesis of robustly stabilizing dissipative controllers which enhance overall perfor-

mance of the closed-loop system is an open research area, which will be explored in

the future.
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Chapter 11

Spring-Mass-Damper Example

This section demonstrates the application of the results developed in this report for

robust controller synthesis using a spring-mass-damper system. First, characteriza-

tion of this LTI system in terms of various power functions is presented. The later

part of this section discusses an approach for synthesis of linear, quadratic Gaussian

(LQG) controllers which satisfy stability criteria for dissipative systems.

fl 12

Figure 11.1: Three Spring-Mass-Damper System.

The system used for the numerical example consists of three masses interconnected

by springs and dampers as shown in Figure 11.1. Values used for the masses, spring

constants, and damping coefficients are shown in Table 11.1. Input forces are applied

at masses 1 and 3, and velocities of masses 2 and 3 are measured. Equations of

motion for this system are developed using a Lagrangian approach, as described in
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i mi _ k_

1 2.0 0.5 5.0

2 1.0 0.2 2.0

3 2.0 0.15 2.O

4 0.45 5.0

Table 11.1: Parameters of Three Spring-Mass-Damper System.

Open-loop Eigenvalue wl (rad/sec) pi

-0.0812 4- 1.3145j 1.3170 0.0616

-0.1625 4- 1.8643j 1.8713 0.0868

-0.2563 4- 2.3867j 2.4005 0.1068

Table 11.2: Natural Frequencies and Damping Ratios for Vibration Modes.

the Introduction. Natural frequencies and damping ratios for three modes of vibration

of this system are given in Table 11.2. Six states for a minimal realization of these

dynamics as a state space model are positions of the three masses followed by their

velocities. This state space realization is given in Table 11.3. Thus, the model used is a

multi-input, multi-output (MIMO) system, with noncollocated sensors and actuators.

The singular value plot for this system is shown in Figure 11.2.

Before proceeding with the examples for the MIMO system, some examples are

presented for a single-input, single-output (SISO) system, corresponding to input

force applied at mass 1 with velocity of mass 3 being measured. This is done because

the results for SISO systems can be visualized, in terms of the frequency response

of the system, and circles in the frequency plane exhibiting the frequency domain

conditions for dissipative LTI systems.

Bode magnitude plot for this system are shown in Figure 11.3, and its Nyquist

plot is shown in Figure 11.4. 7"/_ norm of the system is computed to be 1.516. Using

a gain bound of 7 = 1.75, it follows that this system is dissipative with respect

to a quadratic power function, Q = -1,R = 3.0625, and N = 0. Using convex

programming techniques and software from Refs. [33, 34] to solve the feasibility
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A __

0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00

-3.50 1.00 0.00 -0.35 0.10 0.00

2.00 -4.00 2.00 0.20 -0.35 0.15

0.00 1.00 -3.50 0.00 0.075 -0.30

B

0.0 0.0

0.0 0.0

0.0 0.0

0.5 0.0

0.0 0.0

0.0 O.5

c:[oooooooo1ooo] [oooo]0.0 0.0 0.0 0.0 0.0 1.0 D = 0.0 0.0

Table 11.3: State Space Realization for Spring-Mass-Damper Model.

LMI of the previous section, a symmetric, positive definite matrix which satisfies the

dissipativity LMI, Eq. (3.2), with the values above for Q, N, and R, is computed to

p

be

57.180 -37.370 22.555 -1.901 -6.451 -0.099

-37.370 60.795 -49.074 3.984 2.387 -3.491

22.555 -49.074 83.735 0.353 1.775 2.463

-1.901 3.984 0.353 13.335 -4.157 4.279

-6.451 2.387 1.775 --4.157 13.752 --8.123

-0.099 -3.491 2.463 4.279 -8.123 21.873

All eigenvalues of this matrix P are positive, with the minimum eigenvalue being

7.024. All eigenvalues of the symmetric matrix on the left-hand side of the dissipativity

LMI in Eq. (3.2) axe nonpositive for this symmetric matrix, P, thus showing that the

LMI is satisfied. Note that since/_ used in section 4 is nonsingulax, the same matrix,

P, also satisfies the algebraic Riccati inequality of Eq. (4.1). The dashed circle in

Figure 11.3 is a circle of radius 1.75 centered at the origin. The frequency response

of this system is seen to lie within the dashed circle, as expected from the frequency

domain conditions of section 5.
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Next, a minimum 3'satisfyingthe gain boundednessLMI is computedfor the SISO
system, using the LMI approachpresented in the previous section. Using convex
programmingsoftware [33,34] for the positive semidefiniteprogram of the previous
section,the minimum valueof 7 is computed to be 7 = 1.516, which is the 7-/o0 norm

of the system. A symmetric positive definite matrix satisfying the gain boundedness

LMI for this value of _/is computed

p

as

7.804 -0.319 1.590 0.153 0.022 -0.175

-0.319 5.296 -0.399 -0.169 -0.184 -0.638

1.590 -0.399 8.429 0.404 0.650 0.458

0.153 -0.169 0.404 2.869 0.853 0.863

0.022 -0.184 0.650 0.853 1.759 0.901

-0.175 -0.638 0.458 0.863 0.901 3.016

All eigenvalues of the matrix, P, are positive, with the minimum eigenvalue being

1.1570, and all eigenvalues of the symmetric matrix on the left-hand side of the gain

boundedness LMI are nonpositive. The dotted circle in Figure 11.3 is centered at

the origin with a radius of 1.516, and it can be seen that this is the smallest circle

centered at the origin such that the frequency response of the system remains within

the circle.

Finally, using the LMI approach of the previous section, tight parameters a and b

are determined corresponding to the smallest circle that is centered on the real axis,

and contains the frequency response of the system. The optimization results in a --

-0.488 and b = 1.525 as the tightest parameters such that the LTI system lies inside

sector [a, b]. Therefore, the system is dissipative with respect to a quadratic power

function with Q -- -1,R - 0.744, and N = 0.519. A symmetric positive definite

matrix satisfying the sector boundedness lemma for a = -0.488 and b = 1.525, that

is, the dissipativity LMI with values of Q, N, and R as above, is

p

8.001 -3.884 4.739 -0.092 -0.324 0.413

-3.884 7.736 -4.066 0.320 -0.027 -0.593

4.739 -4.066 8.417 -0.334 0.498 0.293

-0.092 0.320 -0.334 2.168 -0.015 1.346

-0.324 -0.027 0.498 -0.015 1.903 -0.088

0.413 -0.593 0.293 1.346 -0.088 2.296

The minimum eigenvalue of the matrix P is 0.819, and it can be verified that all

eigenvalues of the matrix on the right-hand side of the sector boundedness LMI are
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nonpositive. Figure 11.5showsthe Nyquist plot again. The dashedcircleis centered
on the real axis, and intersects the real axis at a = -0.488 and b = 1.525. It is

seen that this is the smallest circle centered on the real axis such that the frequency

response of the LTI system remains within the circle. For comparison, the dotted

circle, of radius 7 = 1.516 centered at the origin, corresponding to the 7-/oo norm of

the system, is also shown in Figure 11.5. It is obvious from Figure 11.5 that sector

boundedness provides a tighter characterization of this system as opposed to the

7-/oo norm characterization. Thus, this example demonstrates that the use of more

general quadratic power functions, than those for gain-boundedness, can lead to a

tighter characterization of the plant for robust stabilization.

The two-input, two-output model of the spring-mass-damper system is be used for

the following numerical examples. First, the 7-/00 norm of the system is calculated

using the LMI approach presented in the previous section, that is, by minimizing the

gain bound, % under the constraint that it satisfies the gain boundedness lemma. The

minimum value is computed to be 7 = 2.4788, which indeed is the 7"/oo norm of the

system. Thus, one tight characterization of the LTI system is that it is dissipative

with respect to a quadratic power function with coefficients Q = -I, N = 0, and

R = 6.1447I, where the identity matrix I is of order 2. A symmetric positive definite

matrix satisfying the dissipativity LMI for this power function is

10.666 0.145 0.919 0.651 0.595 -0.029

0.145 7.289 -1.839 -0.727 -0.058 0.232

0.919 -1.839 14.737 -0.077 -0.304 0.009

0.651 -0.727 -0.077 3.711 1.295 0.956

0.595 -0.058 -0.304 1.295 2.348 0.893

-0.029 0.232 0.009 0.956 0.893 4.646

The minimum eigenvalue of th:is matrix, P, is 1.518, and the LMI for gain boundedness

is satisfied.

Next, tight sector bounds for this MIMO system are computed using the LMI

approach as above. The rationale for this optimization is that the process minimizes

the sum of areas of the circle in frequency plane for each channel. In practice, the same

approach is used as for selecting tight sector bounds for SISO systems. The solution

to the LMI problem gives the optimal parameters as a = -0.582 and b = 2.662.

Unfortunately, there is no simple way to visualize this result, and its verification

follows simply by noting that the sector boundedness lemma with parameters a =
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-0.582 and b = 2.662 is satisfied by the following symmetric positive definite matrix,

p

10.784 -4.256 4.984 0.087 0.091 0.589

-4.256 9.044 -4.631 0.083 -0.041 -0.275

4.984 -4.631 11.340 -0.584 0.064 0.112

0.087 0.083 -0.584 3.164 0.075 1.458

0.091 -0.041 0.064 0.075 2.276 0.022

0.589 -0.275 0.112 1.458 0.022 3.170

It can be verified that this matrix is positive definite, and its smallest eigenvalue is

1.680. Note that there the system is not positive real, so no results can be computed

for the positive realness lemma.

Next the computation of a minimum Frobenius norm input gain matrix is per-

formed, such that the LTI system is input matrix gain bounded, as discussed in

section 2. This computation is implemented as a linear objective with LMI con-

straints, presented in the previous section. The optimal value of a input matrix gain

b°und is F' = [ 1"7710.6970"697 ] " Equivalently' the LTI system is dissipative withre-1.820

spect to a quadratic power function with coefficient matrices Q = -I, N = 0, and

R=[ 3"6242.5043.7992"504] " The dissipativity LMI is satisfied f°r these c°efficients °f the

quadratic power function by the symmetric, positive definite matrix,

p

11.256 -2.987 6.073 0.397 0.581 -0.112

-2.987 9.975 -3.333 -0.734 0.002 0.413

6.073 -3.333 12.132 0.313 -0.471 -0.194

0.397 -0.734 0.313 3.699 0.655 2.187

0.581 0.002 -0.471 0.655 2.893 0.625

-0.112 0.413 -0.194 2.187 0.625 3.900

The smallest eigenvalue of this matrix is 1.529, demonstrating that it is positive

definite; and it can be verified that the eigenvalues of the right-hand side of the LMI

are nonpositive.

Similarly, following the approach presented in the previous section, an output gain

bound is computed as Fo = [ 2.379 1.535 ] . The LTI system is dissipativematrix
[ 1.5352.479 ]

[with respect to a quadratic power function with coefficients Q = - -0.595 0.640 '
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N = 0, and R = I, satisfying the dissipativity LMI with

p

5.073 -3.005 1.940 0.262 0.344 -1.108

-3.005 4.592 -3.407 -0.726 0.002 0.575

1.940 -3.407 6.119 1.181 -0.313 -0.121

0.262 -0.726 1.181 1.265 -0.353 0.337

0.344 0.002 -0.313 -0.353 0.973 -0.396

-1.108 0.575 -0.121 0.337 -0.396 1.543

The minimum eigenvalue of P is 0.680.

Many other quadratic power functions can be obtained such that the given system

is dissipative with respect to that power function. The quadratic power functions

computed in this section for the same system demonstrate that a system is dissipative

with respect to many quadratic power functions.

Once the plant has been characterized in terms of dissipativity with respect to

a quadratic power function, synthesis of a controller that is dissipative with respect

to another power function which satisfies the sufficient condition for stability is per-

formed for stability robustness. Various approaches for such robust controller syn-

thesis are possible. _oo control theory provides a framework for synthesis of robust

controllers for gain bounded systems, and synthesis of positive real controllers is dis-

cussed in Refs [15, 35]. Extension of these techniques to general dissipative systems

is being pursued currently. An approach to design MIMO controllers employing op-

timal linear regulators and state estimators such that the overall controller satisfies

the stability criteria is discussed in the next.

Full state feedback is assumed for the design of the feedback gain matrix which

optimizes a quadratic performance index using the linear regulator theory. Linear

state estimators are designed such that the overall controller satisfies dissipativity

requirements for robust stability. The approach for synthesis of state estimators is

that of design of optimal Kalman filters, except that the noise covariance matrices

are design parameters rather than a description of actucal process and measurement

noise statistics. This approach is an extension to dissipative systems of the approach

described in Ref. [36] for positive real systems.

Linear regulator theory provides the optimal state feedback for minimizing a

quadratic objective function as follows. For an LTI system, _, = Ax + B f, with full
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state feedback control law, f = -Cox, the linear regulator problem is to determine

the feedback gain, Co, such that a quadratic objective function

LJ = xTQrx + fTp_fdt

is minimized, where Qr = QT > 0, and R_ = R T > 0, are the weighting matrices for

state deviations and control effort. The optimal gain is Cc = RT1BTpc, where Pc is

the stabilizing solution of the Riccati equation,

ATpc ÷PcA - PcBR71BTpc Jr Qr = o

For output feedback controllers, since the system state is not measured, state esti-

mators are required to provide an estimate of the state. If the covariance matrix of

Gaussian process noise in the system is Vf = V/T > 0, and the covariance matrix of

Gaussian measurement noise is Wf = W/ > 0, then the optimal Kalman filter for

state estimates is given by

= (A- pIcTw_Ic)_ + Bf + pfcTW_ly

where P] is the stabilizing solution of the Riccati equation,

AP/ + P/A T - p]cTw;Icpf -}- V] = 0

so that :_ is an optimal estimate of the state. Combining the estimator with the

state feedback linear regulator results in a controller with a realization (Ac, Be, C_, 0),

where

A - BRT1BTp_ - pIcTwT1c

p]cTw? 1

Cc = RT1BT pc

Using the separation theorem, LQG theory establishes that this controller minimizes

the following objective function,

,,iml {j0 }E

where C {.} denotes the estimated value of the argument. Optimality of this objective

function holds when the matrices Vy = V/T > 0 and W I = W T > 0, represent noise

covariance matrices for process noise and measurement noise, respectively. However,
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in the current design approach, these matrices are treated as design parameters for

synthesis of state estimators such that the overall controller satisfies desirable dissi-

pativity criteria for robust stability. Therefore, the approach is to select, weighting

matrices Qr = QT _> 0 and P_ = R T > 0 for the quadratic objective function, and

then design a state estimator, using V! = V7 _> 0 and W! = Wf > 0, as design

parameters, such that the resulting controller satisfies the dissipativity constraints.

Three controller designs are presen'_ed for the spring-mass-damper system to illus-

trate the application of the stability results of dissipative systems to robust control

synthesis. For all these controllers, the weighting matrices for the linear regulator

objective function are chosen as Qr = 100 * cTc and R = I. Design parameters for

the state estimator were chosen as V1 = pl CT C and Wf = p2I. Scalar parameters

pl,p2 were designed for the controller to satisfy desired robust stability conditions.

The performance measure, T', used for a comparison of these controllers is the 7-12

norm of the closed-loop system, or equivalently, the root mean square (RMS) value

of the output, with zero mean, unit intensity white noise applied at the input.

First, a controller is designed while ensuring that its 7too norm satisfies the small

gain condition for stability in feedback around the spring-mass-damper system. With

Pl = 1 and P2 = 15, a controller is obtained which satisfies the small gain stability

condition, that is, its 7"/0o norm is less than 1/2.4788. This may be verified by solving

the dissipativity with a positive definite matrix, P. The performance value, P, for

this controller is 0.809.

Next, a controller is designed such that it is output bounded with respect to the

output matrix gain, Fo = F_-1, which guarantees stability for all plants which are

input matrix gain b°unded with respect t° r' = [ 1"7710.6970.697]1.820, which includes

the spring-mass-damper system being considered. It can be verified that such a

controller is obtained with/h = 1.0, and p2 = 13. The performance of this controller

is :P = 0.800.

Finally, a controller is designed which is inside sector [-0.3757, 1.718]. This would

guarantee stability of the system with the spring-mass-damper in the feedforward

loop, using the sector stability condition, since the plant lies inside sector [-0.528, 2.662].

A sector-bounded system, as desired, is obtained with pl = 1.2,p2 = 15. The perfor-

mance of this controller is P = 0.798.
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Note that there is not much differencein performanceof thesecontrollers. This
is becausethe aim in designingthesecontrollerswas to present a strategy for syn-
thesizing robust, dissipativecontrollers, rather than minimizing the two-norm of the
closed-loopsystem.Synthesistechniqueswhichfor robust dissipativecontrollersthat
optimize closed-loopperformancewill be addressedin the future.

71



10 I I I I I I I il ^ , I I I I I I I

I I I I I I I II jf_ I I I I I I I I
I I I I I I I I I I _ I I I I I I I I

I I I I I I I I I I _ I I I I I I II/
0 ...... I-- -- -- _ ----I----I-- T 1--1--1-I--/--- _--_------ r - 1 - ] - r T 3 1 1

i I I I lllil/ -_ Iv"_ I I f lllfl

I I I I lilly" /"'i_ _ I I i I i I I I
I I I I I III/1 [ I\ _1 ! I I I II l

-I0 ...... 1- -- -- _ -- --I-- --I-- _ -I --I)4_1 -- -- --jL -- -I --_ --_ -- 4 -- 4 --1- _44_

( I f I i lJl'i I / I \ I_ i I l ] I II
I I I I I/rill / I _l _1 I t i I I/

, l , ,/r i i,i/ i \, "l_., , J ill
_-20 t I i/r I i i i_ i _l i _1_1 I I I]

-30 - - -

-4O

I 1 I I I I I I ! I I I I I_1 I I I
I I I I I I I II I I I I I _111

--5( ...... I---- --1-- --I-- --I-- t d--I--I--I---- fl---- -- _ -- fl -- t _ t_l _ _

I I I I I I I I I I I I I I I _11

I I I I I I I I I I I I I I I I_J
I I I I I I I II I I I I I I I I1

I I I I I I I If 1 I I [ I I I II.-6C

10 "1 10 0 10 _

Frequency (ra(:I/_c)

Figure 11.2: Singular Value Plot of the Spring-Mass-Damper System.
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Figure 11.3: Bode Plot of the SISO Model.
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Figure 11.4: Nyquist Plot of the SISOModel.
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Figure 11.5: Nyquist Plot of the SISO Model, with Smallest Circle.
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Chapter 12

Summary

A detailed investigation of linear time-invariant (LTI) systems which are dissipative

with respect to quadratic power functions has been presented in this report. In this

framework, robust stability results have been developed for a large class of systems,

employing mathematical abstractions of the notions of physical power and energy.

Gain bounded systems, positive real systems, and sector bounded LTI systems are

shown to be dissipative with respect to certain quadratic power functions. Novel con-

cepts of gain-matrices bounded LTI systems have been introduced, and are shown to

be a class of dissipative LTI systems. It is demonstrated that dissipative LTI systems

represent a large class of LTI systems. Stability results presented for dissipative LTI

systems have been developed, unifying and extending a number of stability results

available in the literature. Specifically, small gain, positivity, and sector cx)nditions for

stability are shown to be special cases of the stability results for dissipative LTI sys-

tems; and new stability results for input/output gain-matrices bounded LTI systems

have been presented.

State space characterization of dissipative LTI systems has been presented in terms

of the dissipativity lemma, which provided a generalization of the bounded realness

lemma and the Kalman-Yakubovitch lemma or the positive realness lemma. The state

space characterization is equivalently expressed as a linear matrix inequality (LMI)

in terms of a minima] state space realization of the LTI system. For certain cases, the

LMI characterization has been shown to be equivalent to a quadratic matrix inequality

(QMI), which led to an algebraic Riccati equation (ARE) characterization of dissi-
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pative LTI systems. Frequency domain characterization of dissipative LTI systems

was explored. Necessary conditions for dissipative LTI systems have been presented

in terms of frequency domain inequalities (FDIs), and these conditions were shown

to be sufficient as well for a large class of dissipative LTI systems. Strictly dissipa-

tive LTI systems, which are essential in the development of robust stability results

for dissipative systems, are defined as a further restricted class of dissipative LTI

systems. Time-domain and frequency-domain characterizations of strictly dissipative

LTI systems have also been developed in this report. State space characterizations,

and time-domain as well as frequency-domain properties of bounded real, positive

real and sector bounded systems have been shown to follow directly from the results

of dissipative LTI systems.

The framework of dissipative LTI systems has been employed to develop general

robust stability results. In particular, three stability results involving dissipative LTI

systems have been presented in this report. Sufficient conditions were presented for

(1) stability of the feedback interconnection of dissipative LTI systems, (2) stability

of dissipative LTI systems with memoryless feedback nonlinearities, and (3) quadratic

stability of uncertain linear systems. The Lyapunov function approach has been used

to establish these results, with the energy functions of the dissipative LTI systems

being the Lyapunov functions. Stability conditions for these problems, derived from

small gain, positivity and sector criteria, were shown to be special cases of the results

for dissipative LTI systems. New stability results for feedback interconnection of LTI

systems, in terms of input/output gain-matrix bounded LTI systems were also shown

to follow as special cases of the stability results for dissipative LTI systems. Thus,

stability results for dissipative LTI system have been shown to be general results,

which unify and extend a number of stability results from the literature.

Numerical techniques for tight characterization of given LTI systems, in terms of

dissipativity with respect to quadratic power functions, have also been presented in

the report. This approach utilized recently developed positive semidefinite program-

ming techniques to solve linear matrix inequalities. A number of formulations have

been presented for selection of power functions with prescribed structure. Robust con-

troller synthesis techniques, based on the stability results for dissipative LTI systems,

have been discussed. In particular, an approach for dissipative controller synthesis,

employing optimal linear regulators and state estimators, has been presented. The

state estimators were designed such that the overall compensator is dissipative with

respect to required power functions for robust stability. A numerical example of a
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spring-mass-damper system has been employed for a demonstration of the application

of results presented in this report.

Future work would involve further investigation into approaches for tight char-

acterization of uncertain plants, with parametric uncertainty and structured uncer-

tainties. Also, robust controller synthesis techniques which enhance overall system

performance need to be developed further. Finally, characterization of nonlinear sys-

tems which are dissipative with respect to specified power functions, and development

of specific stability results for these systems could be pursued in the future.
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Appendix A

Signals and Systems

This appendix summarizes some results from signals and systems theory used in this

report. First, function spaces for the input and output signals are described, and

then the representations of linear time-invariant (LTI) systems in the state space

form and the frequency-domain, along with certain operations on these systems, are

presented. Properties of bounded real, positive real, and sector bounded LTI systems

are reviewed, and bilinear transformations between these systems are presented. The

last part of this appendix discusses the spectral factorization theorem, which is used

in the frequency-domain characterization of dissipative LTI systems.

Extended spaces of square-integrable functions form the mathematical framework

for the input and the output signals of continuous-time systems. The space of

(Lebesgue) square-integrable functions, that is, real-valued functions f : N+ _ _'_

which satisfy f_ fT(t)f(t)dt < oc, will be denoted as £_'. An inner product on

this space is defined as (y,f) = f_ yr(t)f(t)dt, for all y,f E £_. With this

inner product, /:_ is a Hilbert space, and the natural norm, induced by the in-

ner product, is expressed as I[ f []= [(f, f)]1�2. The Fourier transforms of sig-

nals in £:_ also form a Hilbert space. This space, denoted by/:_+(jN), is a space

of complex functions, ] : C --* Cm, which are analytic in the closed, right-half

plane and satisfy f_-_o ]*(jw)](jw)dw < c_. The inner product in this space is

__ 1 c¢(Y,])cT+(j_) _ f2o_ f/*(jw)](jw)d_, and the induced norm in this space is II f II

= [(], f)]1/2. The subspace of real, rational, proper functions in £_+(j_) is denoted

as 7_/:_+(j_). Matrices with real, rational, proper elements which are analytic in
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the closed, right-half plane, form an inner product spacedenoted by 7_£2+v×"(3R)"
The extendedParseval'stheorem states that for any f, y E /:_', the inner product

(y,f} = f_o yT(t)f(t)d t = f_-_oo_*(jw)f(jw)dw = (t),]), where _,] E £".2+(j_) are

Fourier transforms of y, f respectively, and vice versa. Thus, the Fourier transform

provides a an isometric isomorphism between £_ and £_+(j_).

In response to "well-behaved" input functions, the output of unstable dynamic

systems may increase without bound as time increases; specifically, for the inputs in

/:_', the outputs may not be/:_. In fact, one definition of the stability of a dynamic

system (bounded input, bounded output stability) is that the outputs be in l:_ for

all inputs from £_'. Therefore, for the study of the stability of dynamic systems, a

notion of extended spaces, which contain both the "well-behaved" signals and the

"exploding" signals, is needed.

The truncation operator or truncation projection is needed to define extended

spaces. Given any signal, f : _+ ---, _'_, the truncated signal, denoted as fT(t), for

T E [0, oo), is defined as

fT(t) = ( f(t) fort>Tf°rt<T

This is a mathematical statement of the intuitive concept of truncating a signal at

time T. The extended space, corresponding to the space £:_', denoted by £2"_, is defined
as follows

£2"_ --- {flf: _R+ _ _m,f T E .£_n V T E [0, c¢)}.

Note that £2"_ is only a linear space; that is, it is not an inner product space or

a normed space. For all f E £_, it follows that fT E £_, for all T E [0, oo).

Thus, £_ is a subspace within £2'_- Also, given any function, f : _R+ _ _Rm, if

fr _ c_ for all T E [0,_), then II fr II is a nondecreasing function of T. In this

case, if limT__._¢ II fr II exists, then f E £_, and limT__._ II fr II- II f II. Thus,
this extended space contains both "well-behaved" functions as well as "exploding"

functions. For example, fl = eat for a < 0 is in both spaces, £_ and £2'_; however,

f2 = eat for a > 0 belongs to £2"_, but does not belong to £_. The extended space

of square integrable functions, £2TM, is the universal set for inputs and outputs of

continuous time LTI systems examined in this work.

Next some properties of linear, time-invariant (LTI) systems are reviewed. A state
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spacerealization of a linear, time-invariant system,E, is given by

= Ax+Bf

y = Cx+Df

where y(t) is the p × I output vector, f(t) is an m x I input vector, x(t) is an n x i state

vector and the system matrices (A, B, C, D) describe the dynamics of the LTI system.

The p × m transfer function matrix for this system is G(s) = C(sI - A)-IB + D.

The impulse response matrix for the system, E, is given by G(t) = CeA*B + D6(t).

This system is stable if and only if the eigenvalues of A are in the open left-half
pXrn •

plane. If A is a stable matrix, then G(s) E 7"¢£:2+ (3_). A state space realization,

(A,B,C,D), is a minimal realization if and only if (A,B) is controllable and (A,C)

is observable. If z = Tx, where T is a nonsingular, state transformation matrix, the

transformed state space realization of G(s) is given as (T-1AT, T-aB, CT, D). Two

minimal state space realizations of a transfer function matrix are related by a state

space transformation. Paraconjugate transpose of a transfer function matrix, G(s),

is given by G~(s) = GT(-s) = BT(-sI - AT)-xC T + D T. Thus, if (A,B,C,D) is a

state space realization of G(s), then (-A T, -C T, B T, D T) and (-A T, C T, -B T, D T)

are state space realizations of G~(s).

Next, consider state space realizations for parallel, series and feedback interconnec-

tions of two LTI systems, in terms of their individual realizations. Let (A1, B1, C1, D1)

be a state space realization of Gl(s) and (A2, B2, C2, D2) be a state space realization

of G2(s). A state space realization of the parallel connection of Gl(s) and G_(s), that

is, a state space realization of Gl(s) + G2(s) is

A state space realization of the series

is

0 As ' B2 ,[C1 D1C2],D1D2

Another realization for the series interconnection is

B1C2 A1 ' B1D2 ,[D1C2 C1 ],D1D2

Finally, the closed-loop transfer function of the negative feedback interconnection

of LTI systems G_(s) and G_(s) is T(s) = Gl(s)[I + G2(s)G_(s)] -_ • A state space

,[cl c ],DI÷D2
connection of a,(s) and G2(s), that is, Ga(s)G2(s),

79



representationfor this interconnection in terms of the states of G1(8) and G2(s) is

given by (Ad, Bcl, Cj, Dj), where

Ad = [ A1- B1D2(I + D1D2)-IC1

[ B2(I + D1D2) -1

[ BI(I+D2D1) -1 ]B_ = B2DI(I + D2D1) -1

Cd = [ (I + D1D2)-IC1

D_z = DI(I + D2D1) -1

-BI(I + D2D1)-lC2 " ]

A2 - B2D1 (I + D2D1)-lC2 J

--(I "4"D1D2)-lDIC2 ]

Properties of bounded real, positive real and sector bounded systems are discussed

next. Bounded real systems are systems with finite _/_ norm [9, 10]. Consider the

systems with unity gain, that is, II G(s) I1 _<1. Recall that 7-/oo norm of a system

is the induced operator norm with the £_' norm for the input, f, and the output,

y, [30]. Therefore, the condition for 7"/oo norm of a system being bounded by unity

imlpies that

=If(,):(,).,
for all T E [0, oo) and f E £_, with y(t) being the system response to the truncated

input, fT(t). Thus bounded real systems satisfy

]0 _>0,

for all T E [0, oo) and f E £_. In the frequency-domain, an LTI system with trans-

fer function, G(s), is bounded real if I- G*(jw)G(jw) > 0 for all _o. For single-

input, single-output systems, the bounded realness condition can be visualized in the

frequency-domain as the frequency response being within a unit circle centered at the

origin in the frequency plane. A system is strictly bounded real if it satisfies the con-

ditions for bounded realness in a strict sense. Small gain conditions for stability state

that the feedback interconnection of a bounded real systems and a strictly bounded

real system is stable.

Passive systems are characterized by the input-output property foT yT(t)f(t)dt > O,

for all T E [0, o¢) and f E £2"_ [11]. Equivalently, passive systems satisfy

fo T {yT(t)f(t) + fT(t)y(t)}dt 2 O,
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for all T E [0, oo) and f E £2'_- In the frequency-domain, an LTI system is passive, or

equivalently, the transfer function is positive real, if G*(jw) + G(jw) >_ O, for all w.

Strictly positive real systems satisfy these conditions in a strict sense. Passivity con-

ditions for stability state that the feedback interconnection of a positive real system

and a strictly positive real systems is stable.

A number of sector boundedness conditions for LTI systems are described in the

literature. An LTI system inside sector [a, hi, with _ > b > a, satisfies ((y-a f), (y -

bf))T <_ O, for all T E [0, co) and f E /:_ [13, 29]. A memoryless system is inside

sector [a, b] if its graph lies within a conical region in the input-output space defined

by this inequality. If the memoryless system is time-varying, then the shape of the

graph of a time-varying nonlinearity changes shape with time, however, it must stay

within this conical region for all time, if the nonlinearity is sector bounded. For an LTI

system, the sector boundedness condition may be rewritten as fT(y(t)--af(t))T(y(t)--

bf(t))dt <_ 0, or, equivalently,

fo T {--abfT(t)f(t) + (a + b)yT(t)f(t) - yT(t)y(t)}dt > O,

for all T E [0, oc) and f E/:2_- In the frequency-domain, a transfer function, G(s), is

inside sector [a,b] if herm{[G(jw)- aZ]*[G(jw)- bI]} <_ O, for all w, where herm(.)

stands for Hermitian part of the argument, that is, herm(M) = 0.5(M* + M). The

frequency plane provides a simple visualization for sector bounded SISO systems.

The frequency response of a SISO system inside sector [a, b] lies within a circle in

the frequency plane, which is centered on the real axis and intersects the real axis

at a and b. LTI systems that satisfy these conditions in a strict sense are strictly

inside sector [a, b]. For b > 0 > a, a sector stability result states that the feedback

interconnection of an LTI system inside sector [a, b] with another LTI system which

is strictly inside sector [-2, _1]_ is stable.

Bilinear transformations between positive real systems, bounded real systems and

sector bounded systems are reviewed next [9, 10, 12]. Let S be a bounded real

system, so that y = Sf satisfies (y,y) - (f,f) < O. Noting that (f,f) - (y,y) =

((f-y), (f + y)) _ 0, it follows that Z = (I- S)(I + S) -1 is positive real. Conversely,

if Z is positive real, then S = (I - Z)(I ÷ Z) -1 is bounded real. Further, if a system,

T, is inside sector [a,b], then the system, S = r-_(T- hi), where r = (b-a)/2 and

a = (a+b)/2, is bounded real [37]. Conversely, if S is bounded real, then T = rS ÷hi

is inside sector [a, b]. This fact can be derived from the following manipulations. Let
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y = Tf and y_ = S f; then, y' = r -1

(y',y')- (f,f}
_ 1

r 2

1

r 2

_ 1

r 2

1

r 2

(y - a f), and

{(y --af, y - af) - r2(f,f)}

{(v,v)- +

{(y,y) - (a + b)(y,f> + ab(f,f}}

{(y - af, y- bf)}

This shows that (y', y') - (f, f} _< 0 if and only if (y - a f, y - bf) <_ O, hence the
result.

Finally, the spectral factorization theorem is discussed, since it is used in the devel-

opment of frequency-domain characterization of dissipative LTI systems. A transfer

function matrix, ¢(s), is called a parahermitian matrix if it satisfies ¢~(s) = ¢(s).

The spectral factorization theorem essentially states that a parahermitian transfer

function matrix, which is positive semidefinite on the imaginary axis, can be fac-

torized with stable factors. This may be thought of as an extension of the concept

of Cholesky decomposition of positive semidefinite matrices. The theorem states

that a given parahermitian transfer function matrix ¢~(8) = ¢(s), which satisfies

¢(jw) > 0, for all w • _, can be factorized as ¢(s) = M~(s)M(s), where M(s) is a

stable transfer function matrix with transmission zeros in the closed left-half plane.

This appendix has presented the notation and some results which have been used

in this work.
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